| [1] | Hu, Liming, Hui Wu, Lin Zhang, Pengwei Zhang & Qingbo Wen. 2017. Geotechnical properties of mine tailings. Journal of Materials in Civil Engineering 29(2). doi: 10.1061/(asce)mt.1943-5533.0001736. |
| [2] | Jing, Xiaofei, Yulong Chen, Dan Xie, David J. Williams, Shangwei Wu, Wensong Wang & Tianwei Yin. 2019. The effect of grain size on the hydrodynamics of mudflow surge from a tailings dam-break. Applied Sciences 9(12). 2474. doi:10. 3390/app9122474. |
| [3] | Boger, David V. 2013. Rheology of slurries and environmental impacts in the mining industry. Annual Review of Chemical and Biomolecular Engineering 4(1). 239–257. doi: 10.1146/annurev-chembioeng-061312-103347. |
| [4] | O'Brien, J. S., P. Y. Julien & W. T. Fullerton. 1993. Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2). 244–261. doi: 10.1061/(asce)0733-9429(1993)119:2(244). |
| [5] | Moon, N, M Parker, HJJ Boshoff & D Clohan. 2019. Advances in non-newtonian dam break studies 15. |
| [6] | de Paiva, Camilla Adriane, Aníbal da Fonseca Santiago & José Francisco do Prado Filho. 2020. Content analysis of dam break studies for tailings dams with high damage potential in the quadrilátero ferrífero, minas gerais: technical weaknesses and proposals for improvements. Natural Hazards 104(2). 1141–1156. doi:10.1007/s11069-020-04254-8. |
| [7] | Liu, Shielan & Michael Henderson. 2020. An overview on methodologies for tailings dam breach study. |
| [8] | Desbrun, Mathieu & Marie-Paule Gascuel. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies 61–76. Springer Vienna. doi:10.1007/978-3-7091-7486-9_5. |
| [9] | Hu, X.Y. & N.A. Adams. 2006. A multi-phase sph method for macroscopic and mesoscopic flows. Journal of Computational Physics 213(2). 844–861. doi:10.1016/j.jcp.2005.09.001. |
| [10] | Shao, J.R., H.Q. Li, G.R. Liu & M.B. Liu. 2012. An improved sph method for modeling liquid sloshing dynamics. Computers amp; Structures 100–101. 18–26. doi:10.1016/j.compstruc.2012.02.005. |
| [11] | Dalrymple, R.A. & B.D. Rogers. 2006. Numerical modeling of water waves with the sph method. Coastal Engineering 53(2–3). 141–147. doi:10.1016/j.coastaleng. 2005.10.004. |
| [12] | Crespo, A. J. C., M. Gómez-Gesteira & R. A. Dalrymple. 2007. Boundary conditions generated by dynamic particles in SPH methods 5(3). 173–184. doi:https://doi.org/10.3970/cmc.2007.005.173. |
| [13] | Shao, Songdong & Edmond Y.M. Lo. 2003. Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Advances in Water Resources 26(7). 787–800. doi:10.1016/s0309-1708(03)00030-7. |
| [14] | Hosseini, S.M., M.T. Manzari & S.K. Hannani. 2007. A fully explicit three-step SPH algorithm for simulation of non-newtonian fluid flow. International Journal of Numerical Methods for Heat & Fluid Flow 17(7). 715–735. doi:10.1108/ 09615530710777976. |
| [15] | Kwak, Minkyung, David F. James & Katherine A. Klein. 2005. Flow behaviour of tailings paste for surface disposal. International Journal of Mineral Processing 77(3). 139–153. doi:10.1016/j.minpro.2005.06.001. |
| [16] | Herschel, Winslow H. & Ronald Bulkley. 1926. Konsistenzmessungen von gummi- benzollösungen. Kolloid-Zeitschrift 39(4). 291–300. doi:10.1007/bf01432034. |
| [17] | Papanastasiou, Tasos C. 1987. Flows of materials with yield. Journal of Rheology 31(5). 385–404. doi:10.1122/1.549926. |
| [18] | Frigaard, I.A. & C. Nouar. 2005. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. Journal of Non-Newtonian Fluid Mechanics 127(1). 1–26. doi:10.1016/j.jnnfm.2005.01.003. |
| [19] | Gingold, R. A. & J. J. Monaghan. 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181(3). 375–389. doi:10.1093/mnras/181.3.375. |
| [20] | Monaghan, J. J. & J. C. Lattanzio. 1985. A refined particle method for astrophysical problems. Astronomy and Astrophysics 149(1). 135–143. |
| [21] | Monaghan, J. J., R. A. F. Cas, A. M. Kos & M. Hallworth. 1999. Gravity currents descending a ramp in a stratified tank. Journal of Fluid Mechanics 379. 39–69. doi: 10.1017/s0022112098003280. |
| [22] | Sáo, Yuri Taglieri. 2021. Investigação numérico-experimental da influência de efeitos de inércia em escoamentos de fluidos viscoplásticos modelados como ruptura de barragem. Universidade Estadual Paulista “Júlio De Mesquita Filho” MA thesis. |
| [23] | Ding, Lijun & Ardeshir Goshtasby. 2001. On the canny edge detector. Pattern Recognition 34(3). 721–725. doi:10.1016/s0031-3203(00)00023-6. |
| [24] | Pereira, João Batista. 2018. Desenvolvimento de aparato automatizado de slump test: Ferramenta de controle de qualidade e de caracterização reológica de materiais. Universidade Estadual Paulista “Júlio De Mesquita Filho” MA thesis. |
| [25] | Domínguez, J. M., G. Fourtakas, C. Altomare, R. B. Canelas, A. Tafuni, O. García- Feal, I. Martínez-Estévez, A. Mokos, R. Vacondio, A. J. C. Crespo, B. D. Rogers, P. K. Stansby & M. Gómez-Gesteira. 2021. DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics 9(5). 867–895. doi: 10.1007/s40571-021-00404-2. |
| [26] | Crespo, Alejandro C., Jose M. Dominguez, Anxo Barreiro, Moncho Gómez-Gesteira & Benedict D. Rogers. 2011. Gpus, a new tool of acceleration in cfd: Efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6(6). e20685. doi:10.1371/journal.pone.0020685. |
| [27] | Owens, J.D., M. Houston, D. Luebke, S. Green, J.E. Stone & J.C. Phillips. 2008. Gpu computing. Proceedings of the IEEE 96(5). 879–899. doi:10.1109/jproc.2008. 917757. |
| [28] | Hérault, Alexis, Giuseppe Bilotta & Robert A. Dalrymple. 2010. SPH on GPU with CUDA. Journal of Hydraulic Research 48(sup1). 74–79. doi:10.1080/00221686.2010.9641247. |
| [29] | Dalrymple, Robert A. & Omar Knio. 2001. Sph modelling of water waves. In Coastal dynamics ’01, American Society of Civil Engineers. doi:10.1061/40566(260)80. |
| [30] | Lo, Edmond Y.M. & Songdong Shao. 2002. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied Ocean Research 24(5). 275– 286. doi:10.1016/s0141-1187(03)00002-6. |
| [31] | Fang, Xiang-Li, Fu-Ren Ming, Ping-Ping Wang, Peng-Nan Sun & A-Man Zhang. 2022. Application of sph method in the study of ship capsizing induced by large- scale rising bubble. Ocean Engineering 257. 111629. doi:10.1016/j.oceaneng.2022. 111629. |
| [32] | Quinlan, N. J., M. Basa & M. Lastiwka. 2006. Truncation error in meshfree particle methods. International Journal for Numerical Methods in Engineering 66(13). 2064– 2085. doi:10.1002/nme.1617. |
| [33] | Monaghan, J. J. 1982. Why particle methods work. SIAM Journal on Scientific and Statistical Computing 3(4). 422–433. doi:10.1137/0903027. |
| [34] | Wendland, Holger. 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 4(1). 389–396. doi:10.1007/bf02123482. |
| [35] | Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30(1). 543–574. doi:10.1146/annurev.aa.30.090192.002551. |
| [36] | Verlet, Loup. 1967. Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical Review 159(1). 98–103. doi:10.1103/physrev.159.98. |
| [37] | Leimkuhler, Benedict & Charles Matthews. 2016. Efficient molecular dynamics using geodesic integration and solvent–solute splitting. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2189). 20160138. doi:10.1098/ rspa.2016.0138. |
| [38] | Parshikov, Anatoly N., Stanislav A. Medin, Igor I. Loukashenko & Valery A. Milekhin. 2000. Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. International Journal of Impact Engineering 24(8). 779–796. doi: https://doi.org/10.1016/ S0734-743X(99)00168-2. |
| [39] | Molteni, Diego & Andrea Colagrossi. 2009. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Computer Physics Com- munications 180(6). 861–872. doi:10.1016/j.cpc.2008.12.004. |
| [40] | Fourtakas, Georgios, Jose M. Dominguez, Renato Vacondio & Benedict D. Rogers. 2019. Local uniform stencil (lust) boundary condition for arbitrary 3-d boundaries in parallel smoothed particle hydrodynamics (sph) models. Computers & Fluids 190. 346–361. doi:10.1016/j.compfluid.2019.06.009. |
| [41] | English, Aaron, José Domínguez, Renato Vacondio, Alejandro Crespo, P.K. Stansby, Steven Lind & Moncho Gesteira. 2019. Correction for dynamic boundary conditions. |
| [42] | Marrone, S., M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé & G. Graziani. 2011. δ-sph model for simulating violent impact flows. Computer Methods in Applied Mechanics and Engineering 200(13–16). 1526–1542. doi:10.1016/j.cma.2010.12.016. |