[1] | Bluszcz, A and Manowska, A., 2020, Differentiation of the Level of Sustainable Development of Energy Markets in the European Union Countries, Energies, 13(18), 1-20. |
[2] | SNIS (2023). Diagnóstico Temático Serviços de Água e Esgoto: Visão Geral ano de referência 2022. [Online]. Available: https://www.gov.br/cidades/pt-br/acesso-a-informacao/acoes-e-programas/saneamento/snis/produtos-do-snis/diagnosticos/DIAGNOSTICO_TEMATICO_VISAO_GERAL_AE_SNIS_2023.pdf. |
[3] | James, K., Campbell, S. L., and Godlove, C. E., Água e Energia: Aproveitando as Oportunidades de Eficientização de Água e Energia Não Exploradas nos Sistemas Municipais, 1st ed. Washington, DC: Alliance, 2002, 160 p. |
[4] | Qin, X., Luo, Y., Chen, S., Chen, Y., and Han, Y., 2022, Investigation of Energy-Saving Strategy for Parallel Variable Frequency Pump System Based on Improved Differential Evolution Algorithm., Energies, 15 (15), 5360 – 5373. |
[5] | Ramani, K., and Umamahesh, N. V., 2024, Multi-criteria decision-making methods for optimal design of intermittent water distribution network., Water Supply, 24 (4), 1176 – 1195. |
[6] | Li, R., Wang, H., Xin, K., and Tao, T., 2024, Multi-objective optimization design of integrated pump station based on NSGA-III., Water Supply, 24 (8), 2866 – 2881. |
[7] | Geem, Z.W., 2015, Multiobjective optimization of water distribution networks using Fuzzy theory and harmony search, Water, 7(7), 3613–3625. |
[8] | De Paola, F., Pugliese, F., Fontana, N., Giugni, M, 2025, A new Digital Harmony Search algorithm for optimizing Pump Scheduling in Water Distribution Networks., Water Research X, 27, 1-11. |
[9] | Torkomany, M., Hassan, H. S., Shoukry, A., Abdelrazek, A. M., and Elkholy, M., 2021, An Enhanced Multi-Objective Particle Swarm Optimization in Water Distribution Systems Design., Water, 13 (10), 1334 – 1345. |
[10] | Wang, D., Liu, Z., Zhang, D., and Liu, X., 2024, Prediction of water consumption in Beijing based on the multi-variable grey model with adjacent accumulation., Water Supply, 24 (5), 1924 – 1937. |
[11] | Ghandour, H.A.E., and Elbeltagi, E., 2018, Comparison of five evolutionary algorithms for optimization of water distribution networks, Journal of Computing in Civil Engineering, 32(1), 1-10. |
[12] | Tolson, B. A., Asadzadeh, M., Zecchin, A. C., and Maier, H. R., 2008, A New Algorithm for Water Distribution System Optimization: Discrete Dynamically Dimensioned Search, Proc., World Environmental and Water Resources Congress, Honolulu, Hawaii, USA, 1–10. |
[13] | Du, K., Xiaoa, B., Songa, Z., Xua, Y., Tanga, Z., Xua, W and Duanb, H, 2022, A novel self-adaptation and sorting selection-based differential evolutionary algorithm applied to water distribution system optimization., Water Infrastructure, Ecosystems and Society, 71(9), 1068–1082. |
[14] | Palod, N., Prasad, V., and Khare, R., 2022, A new multi-objective evolutionary algorithm for the optimization of water distribution networks., Water Supply, 22 (12), 8972 – 8987. |
[15] | Esmaeili, Y., Yosefvand, F., Shabanlou, S., Rajabi, A., and Izadbakhsh, M. A., 2025, Development of a new self-adaptive F-NSGA-III algorithm with Fuzzy structure for designing urban water distribution networks., Water Supply, 25 (1), 164-178. |
[16] | Vasan, A., Rajua, S., and Pankaj, S., 2022, Fuzzy optimization-based Water Distribution Network design using Self-Adaptive Cuckoo Search Algorithm., Water Supply, 22 (3), 3178 – 3194. |
[17] | Gangwani, L., Palod, N., Dongre, S., and Gupta, R., 2024, Optimal pipe-sizing design of water distribution networks using modified Rao-II algorithm., Journal of Water and Climate Change., 15 (8), 3775 – 3791. |
[18] | Satish, R., Hajibabaei, M., Dastgir, A., Oberascher, N., and Sitzenfrei, R., 2024, A graph-based method for identifying critical pipe failure combinations in water distribution networks., Water Supply, 24 (7), 2353 - 2366. |
[19] | Wu, Y.Z., and Simpson, A.R., 2002, A self adaptive boundary search genetic algorithm and its application to water distribution systems, Journal of Hydraulic Research, 40(2), 191–203. |
[20] | Van Le, T., 1995, A Fuzzy Evolutionary Approach to Solving Constraint Problems, Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Perth, Australia, 317–319. |
[21] | CAESB (2023). CAESB inova. [Online]. Available: https://s3.caesb.df.gov.br/www/prod/site1/2024/07/RevistaCaesbInova2023.pdf. |
[22] | Gebrim, D. V. B., Otimização operacional de sistemas de abastecimento de água com objetivo de redução de custo de energia elétrica, Mestrado em Tecnologia Ambiental e Recursos Hídricos, Universidade de Brasília, Brasília, 2013. |
[23] | ADASA (2024). Abastecimento de água e esgotamento sanitário. [Online]. Available: https://www.adasa.df.gov.br/areas-de-atuacao/abastecimento-de-agua-e-esgoto. |
[24] | Rossman, L. A., EPANET Programmer’s Toolkit Manual. Water Supply and Water Resources Division, National Risk Management Research Laboratory. Cincinnati, OH: USEPA, 2000. |
[25] | Kumar, V. H. S., and S.K, P., 2023, Selection of Real-Coded Genetic Algorithm parameters in solving simulation optimization problems for the design of water distribution networks., Water Supply, 23 (12), 5046 – 5061. |
[26] | Wang, Y., Yok, K.T., Wu, W., and Simpson, A.R., 2021, Minimizing pumping energy cost in real time operations of water distribution systems using economic model predictive control, Journal of Water Resources Planning and Management, 147(7). |
[27] | Egito, T. B., Azevedo, J. A and Bezerra, S. T. M., 2023, Optimization of the operation of water distribution systems with emphasis on the joint optimization of pumps and reservoirs., Water Supply, 23 (3), 1094-1105. |
[28] | López-Ibáñez, M., Prasad, T. D., Paechter, B., 2008, Ant colony optimization for optimal control of pumps in water distribution networks, journal of water resources planning and management, 134 (4), 337-346. |
[29] | Bhave, P.R., and Gupta, R., 2004, Optimal design of water distribution networks for Fuzzy demands, Civil Engineering and Environmental Systems, 21(4), 229–245. |
[30] | Lacerda, I. S., Lucena, K. F. M., and Galvão, C. O., 2015, Regras difusas para sistemas adutores sujeitos a incertezas nas demandas. Proc., 21th Simpósio Brasileiro de Recursos Hídricos, Brasília, Brazil, 1-8. |
[31] | Candelieri, A., Perego, R., Archetti, F., 2018, Bayesian optimization of pump operations in water distribution systems. Journal of Global Optimization, 71, 213-235. |
[32] | Maskit, M., and Ostfeld, A., 2021, Multi-objective operation–leakage optimization and calibration of water distribution systems, Water, 13(11), 1-14. |
[33] | Bahena, B. M., Chávez, M. A. C., Melgar, E. Y. A., Rosales, M. H. C., and Lopez, R. R., 2018, Using a Genetic Algorithm with a Mathematical Programming Solver to Optimize a Real Water Distribution System, Water, 10(10), 1-17. |
[34] | Salomons, E., and Housh, M., 2020, A practical optimization scheme for real time operation of water distribution systems, Journal of Water Resources Planning and Management, 146(4), 1-12. |
[35] | Shamir, U., and Salomons, E., 2008, Optimal real time operation of urban water distribution systems using reduced models, Journal of Water Resources and Management, 134(2), 181–185. |
[36] | Broad, D.R., Maier, H.R., and Dandy, G.C., 2005, Optimal operation of complex water distribution systems using metamodels, Journal of Water Resources Planning and Management, 131(3), 222–232. |
[37] | Porto, R. M., Hidráulica Básica, 4th ed. São Carlos, Brazil: EESC/USP, 2006, 540 p. |
[38] | Holland, J. H., Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975, 232 p. |
[39] | Savic, D.A., Walters, G.A., and Schwab, M., 1997, Multiobjective genetic algorithms for pump scheduling in water supply, Computer Science, 1305(1), 227–236. |
[40] | Naidu, M. N., Vasan, A., Varma, M. R. R., and Patil, M. B., 2023, Multiobjective design of water distribution networks using modified NSGA-II algorithm., Water Supply, 23 (3), 1220 – 1233. |
[41] | Tolson, B. A., and Shoemaker, C. A., 2007, Dynamically dimensioned search algorithm for computationally efficient watershed model calibration, Water Resources Research, 43 (1), 1 - 16. |
[42] | Zheng, F., Simpson, A. R., and Zecchin, A., 2012, A Performance Comparison of Differential Evolution and Genetic Algorithm Variants Applied to Water Distribution System Optimization, Proc., World Environmental and Water Resources Congress, Albuquerque, New Mexico, USA, 2954–2963. |
[43] | Storn, R.S., and Price, K., 1997, Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11(4), 341–359. |
[44] | Suribabu, C.R., 2010, Differential evolution algorithm for optimal design of water distribution networks, Journal of Hydroinformatics, 12(1), 66–82. |
[45] | Marchi, A., Dandy, G., Wilkins, A., e Rohrlach, H., 2014, Methodology for comparing evolutionary algorithms for optimization of water distribution systems, Journal of Water Resources Planning and Management, 140(1), 22–31. |
[46] | Moosavian, N., and Lence, B., 2019, Fittest individual referenced differential evolution algorithms for optimization of water distribution networks, Journal of Computing in Civil Engineering, 33(6), 1-16. |
[47] | Dandy, G. C., Wilkins, A., and Rohrlach, H., 2010, A Methodology for Comparing Evolutionary Algorithms for Optimizing Water Distribution Systems, Proc., 12th Water Distribution System Analysis Symposium, Tucson, Arizona, USA, 786–798. |