[1] | Chaperon P., Danloux J., Ferry L. (1993). Fleuves et Rivières de Madagascar. Ed. ORSTOM, Paris (France), 1993 (883 pages). |
[2] | USACE (US Army Corps of Engineers) (2022). Hydrologic Modeling System HEC-HMS - User's Manual (CPD-74A). Hydrologic Engineering Center (CEIWR-HEC). (943 pages). Avalaible on https://www.hec.usace.army.mil/software/hec-hms/. |
[3] | USACE (US Army Corps of Engineers) (2022). Hydrologic Modeling System HEC-HMS – Technical Reference Manuel (CPD-74B). Hydrologic Engineering Center (CEIWR-HEC). (268 pages). Avalaible on https://www.hec.usace.army.mil/software/hec-hms/. |
[4] | Emam A.R., Mishra B.K., Kumar P., Masago Y., Fukushi K. (2016). Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia. Water, 2016, 8, 559 (10 pages), https://doi.org/10.3390/w8120559. |
[5] | Gumindoga W., Makurira H., Phiri M., Nhapi I. (2016). Estimating runoff from ungauged catchments for reservoir water balance in the Lower Middle Zambezi Basin. Water SA, Vol. 42 No. 4 October 2016. http://dx.doi.org/10.4314/wsa.v42i4.15. |
[6] | Györi M.-M., Haidu I. (2011). Unit Hydrograph Generation For Ungauged Subwatersheds. Case Study: The Monorostia River, Arad County, Romania. Geographia Technica, 2011, 6, pp.23-29; https://hal.univ-lorraine.fr/hal-02488204/. |
[7] | Hammouri N., El-Naqa A. (2007). Hydrological modeling of ungauged wadis in arid environrnents using GIS: a case srudy of Wadi Madoneh in Jordan. Revista Mexicana de Ciancias Geologicas, Vol. 24, No 2, 2007, pp. 185-196, ISSN 2007-2902. |
[8] | Ibrahim-Bathis K., Ahmed S.A. (2016). Rainfall-runoff modelling of Doddahalla watershed - an application of HEC-HMS and SCN-CN in ungauged agricultural watershed. Arab Journal of Geosciences, 2016, 9: 170. http://dx.doi.org/10.1007/s12517-015-2228-2. |
[9] | Khaddor I., Achab M., Soumali M.R., Alaoui A.H. (2017). Rainfall-Runoff calibration for semi-arid ungauged basins based on the cumulative observed hyetograph and SCS Storm model: Application to the Boukhalef watershed (Tangier, North Western Morocco). Journal of Materials and Environmental Sciences, 2017, Volume 8, Issue 10, pp. 3795-3808; ISSN: 2028-2508. |
[10] | Zhang Q., Jian W., Lo E.Y.M. (2020). Assessment of Flood Risk Exposure for the Foshan-Zhongshan Region in Guangdong Province, Chine. Water, 2020, 12, 1159. https://doi.org/10.3390/w12041159. |
[11] | Ratsaramody J., Randriamparany M. (2021). Reconstitution des débits de crue du fleuve Mananjeba lors du passage du cyclone Eliakim en mars 2018 à Madagascar. In Dialogues autour des Défis de l'Environnement à Madagascar. Antsiranana Nov. 2021. Ed. TSIPIKA 2021. ISBN 978-36076-053-4. |
[12] | Ross C.W., Prihodko L., Anchang J.Y., Kumar S.S., Ji W., Hanan N.P. (2018). Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1566. |
[13] | Haddad A., Remini B. (2021). Extreme rainfall-runoff events modeling by HEC-HMS model for Koudiet Rosfa watershed, Algeria. GeoScience Engineering. Vol. 67 (2021), No. 4, pp. 144–155, ISSN 1802-5420. https://doi.org/10.35180/gse-2021-0060. |
[14] | Hamdan A.N.A., Almuktar S., Scholz M. (2021). Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq. Hydrology. 2021, vol. 8(2), art. no. 58. ISSN 2306-5338. https://doi.org/10.3390/hydrology8020058. |
[15] | USDA (US Dcpartment of Agriculture) (1986). Urban Hydrology for Small Watershed, Technical Release TR-55. 210-VI-TR-55, Second Ed., june 1986 (164 pages). Avalaible on: https://www.nrcs.usda.gov/. |
[16] | McCuen R.H. (1998). Hydrologic Analysis and Design. Second Edition. Prentice-Hall Inc, ISBN 0- 13- 134958-9 (833 pages). |
[17] | Jabri B., Hessane M.A., Morabbi A., Msatef K. (2022). Application of Soil Conservation Service Curve Number Method for Runoff Estimation in Sebou Watershed, Morocco. Ecological Engineering & Environmental Technology 2022, 23(6), 70–81. https://doi.org/10.12912/27197050/152910. |
[18] | Chow V.T., Maidment D.R., Mays L.W. (1988). Applied Hydrology, McGraw-Hill Inc., ISBN 0-07-010810-2 (540 pages). |
[19] | Mishra S.K., Singh V.P. (2003). Soil Conservation Service Curve Number (SCS CN) Methodology. Springer Science+Business, ISBN 978-90-481-6225-3. (534 pages). https://doi.org/10.1007/978-94-017-0147-1. |
[20] | U.S. Army Corps of Engineers (2023). HEC-HMS Technical Reference Manual. Avalaible on https://www.hec.usace.army.mil/software/hec-hms/documentation.aspx. |
[21] | Dingman S.L. (2015). Physical Hydrology. Third Edition. Waveland Press, Inc. ISBN 978-1-4786-1118-9 (657 pages). |
[22] | Perdikaris J., Gharabaghi B., Rudra R. (2018). Reference Time of Concentration Estimation for Ungauged Catchments. Earth Science Research; Vol. 7, No. 2; 2018. https://doi.org/10.5539/esr.v7n2p58. |
[23] | Watt W.E., Chow K.C.A. (1985). A general expression for basin lag time. Canadian Journal of Civil Engineering. Vol. 12, No 2, 1985. https://doi.org/10.1139/l85-031. |
[24] | Tewolde M.H., Smithers J.C. (2007). Flood routing in ungauged catchments using Muskingum methods. Water SA, Vol. 32 No. 3 (2006), https://doi.org/10.4314/wsa.v32i3.5263. |
[25] | Song X.M., Kong F.Z., Zhu Z.X. (2011). Application of Muskingum routing method with variable parameters in ungauged basin. Water Science and Engineering, 2011, 4(1): 1-12. https://doi.org/10.3882/j.issn.1674-2370.2011.01.001. |
[26] | Laouacheria F., Kechida S., Chabi M. (2018). Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment. International Journal of Urban and Civil Engineering, Vol: 12, No:10, 2018. |
[27] | National Engineering Handbook (NEH) (2004). National Engineering Handbook, Part 630 Hydrology; USDA: Washington, DC, USA, 2004. |
[28] | Woodward D.E., Hawkins R.H., Jiang R., Hjelmfelt J.A.T., Van Mullem J.A., Quan, Q.D. (2003). Runoff Curve Number Method: Examination of the Initial Abstraction Ratio. World Water & Environmental Resources Congress 2003. http://dx.doi.org/10.1061/40685(2003)308. |
[29] | Lim K.J., Engel B.A., Muthukrishnan S., Harbor J. (2006). Effects of Initial Abstraction and Urbanization on Estimated Runoff Using CN Technology. Journal of the American Water Resources Association (JAWRA) 2006, 42, 629–643. http://dx.doi.org/10.1111/j.1752-1688.2006.tb04481.x. |
[30] | Lal M., Mishra S., Kumar M. (2019). Reverification of antecedent moisture condition dependent runoff curve number formulae using experimental data of Indian watersheds. Catena 2019, 173, 48–58. http://dx.doi.org/10.1016/j.catena.2018.09.002. |
[31] | Krajewski A., Sikorska-Senoner A.E., Hejduk A., Hejduk L. (2020). Variability of the Initial Abstraction Ratio in an Urban and an Agroforested Catchment. Water, 2020, 12, 415. https://doi.org/10.3390/w12020415. |
[32] | Bondelid T.R., McCuen R.H., Jackson T.J. (1982). Sensitivity of SCS Models to Curve Number Variation1. JAWRA Journal of Americant Water Resources Association 1982, 18, 111–116. http://doi.org/10.1111/j.1752-1688.1982.tb04536.x. |
[33] | Mishra S.K., Singh V.P. (2003). Soil Conservation Service Curve Number (SCS-CN) Methodology. Springer Science + Business Media Dordrecht. ISBN 978-90-481-6225-3, (534 pages) https://doi.org/10.1007/978-94-017-0147-1. |
[34] | Zahraei A., Baghbani R., Linhoss A. (2021). Applying a Graphical Method in Evaluation of Empirical Methods for Estimating Time of Concentration in an Arid Region. Water 2021, 13, 2624. https://doi.org/10.3390/w13192624. |
[35] | Ponce, V.M. (1989). Engineering Hydrology: Principles and Practices. Prentice Hall, Englewood Cliffs, New Jersey. |
[36] | Pramana Y.H., Harisuseno D. (2024). Time of concentration estimated of overland flow. IOP Conf. Series: Earth and Environmental Science, 1311 (2024) 012004, https://doi.org/10.1088/1755-1315/1311/1/012004. |
[37] | Grimaldi S., Petroselli A., Tauro F., Porfiri M. (2012). Time of concentration: a paradox in modern hydrology. Hydrological Sciences Journal, vol. 57, no. 2, pp. 217-228, 2012. https://doi.org/10.1080/02626667.2011.644244. |
[38] | Azizian, A. (2018). Uncertainty Analysis of Time of Concentration Equations based on First-Order-Analysis (FOA) Method. American Journal of Engineering Applied Sciences. 2018, 11, 327–341. http://doi.org/10.3844/ajeassp.2018.327.341. |