[1] | BANQUE MONDIALE (2016). Renforcer la résilience de Madagascar face aux changements climatiques pour garantir la sécurité alimentaire et préserver les moyens de subsistance, http://www.banquemondiale.org/fr/news/feature. |
[2] | AUTORITE ROUTIERE DE MADAGASCAR (2017). Travaux routiers post-cycloniques suite aux dégâts des cyclones tropicaux Giovanna et Irina sur les routes nationales dans différentes régions de l'île, http://www.arm.mg/arm. |
[3] | AUTORITE ROUTIERE DE MADAGASCAR (2019). Dossier d'Appel d'Offres Ouvert National No 047-ARM/BEI/2019: "Travaux d'Urgence pour la Réparation de la Digue sur la Rivière de la Mananjeba vers le PK581 de la RN6". |
[4] | L. Duret (1976). Estimation des débits de crues à Madagascar, Fonds d'Aide et de Coopération de la République Française, (http://www.sudoc.abes.fr/). |
[5] | P. Chaperon, J. Danloux and L. Ferry (1993). Fleuves et Rivières de Madagascar. Ed. ORSTOM, Paris (France), 883 pages (https://www.documentation.ird.fr/hor/fdi:37307). |
[6] | J. A. N. Shokory, J.-I. G. Tsutsumi and K. Sakai (2016). Flood Modeling and Simulation using iRIC: A Case Study of Kabul City. E3S Web of Conferences, 04003. FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. (http://u6.gg/ksixc). |
[7] | H. Takewaki, A. Nishiguchi and T. Yabe (1985). The cubic-interpolated pseudo-particle (CIP) method for solving hyperbolic-type equations. Journal of Computational Physics, Vol. 61, pp. 261-268 (https://ui.adsabs.harvard.edu/abs/1985JCoPh..61..261T/). |
[8] | H. Takewaki and T. Yabe (1987). The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations. Journal of Computational Physics, Vol. 70, pp. 355-372 (https://www.sciencedirect.com/science/article/pii/0021999187901872). |
[9] | T. Yabe and E. Takei (1988). A new higher-order Godunov method for general hyperbolic equations. Journal of The Physical Society of Japan, Vol. 57, pp. 2598-2601 (https://journals.jps.jp/doi/abs/10.1143/JPSJ.57.2598). |
[10] | T. Yabe, T. Ishikawa, P. Y. Wang, T. Aoki, Y. Kadota and F. Ikeda (1991). A universal solver for hyperbolic-equations by cubic-polynomial interpolation. II. Two- and three-dimensional solvers. Computer Physics Communications, Vol. 66, pp. 233-242 (https://www.sciencedirect.com/science/article/pii/001046559190072S). |
[11] | T. Yabe, R. Tanaka, T. Nakamura and F. Xiao (2001). An Exactly Conservative Semi-Lagrangian Scheme (CIP–CSL) in One Dimension. American Meteorological Society, Monthly Weather Review, Volume 129, pp. 332-344 (http://u6.gg/ksidm). |
[12] | K. Kohge and K. Minemura (2001). Three-dimensional CIP Solution Method for Navier-Stokes Equation Described with General Coordinate System. I.J. Trans. Phenomena, Vol. 4, pp. 285-298. (https://www.researchgate.net/scientific-contributions/19644245_Kiyoshi_Minemura). |
[13] | D. Barada, T. Fukuda, M. Itoh and T. Yatagai (2006). Cubic interpolated propagation scheme in numerical analysis of lightwave and optical force. Optics Express, Vol. 14, No 9, pp. 4151-4168 (https://www.osapublishing.org/oe/). |
[14] | K. Takiwaza, T. Yabe, Y. Tsugawa, T. E. Tezduyar, and H. Mizoe (2006). Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids. Computational Mechanics (https://link.springer.com/article/10.1007/s00466-006-0093-2). |
[15] | N.A.C. Sidik and M.R.A. Rahman (2009). Cubic Interpolated Pseudo Particle (CIP) – Thermal BGK Lattice Boltzmann Scheme for Solving Incompressible Thermal Fluid Flow Problem. Malaysian Journal of Mathematical Sciences 3(2): 183-202 (http://einspem.upm.edu.my/journal/fullpaper/vol3no2/4.%20azwadi%20(for%20web).pdf). |
[16] | Q.-L. Ji, X.-Z. Zhao and S. Dong (2013). Numerical Study of Violent Impact Flow Using a CIP-Based Model. Journal of Applied Mathematics, Hindawi Publishing Corporation, Volume 2013, Article ID 920912. http://dx.doi.org/10.1155/2013/920912. |
[17] | A.L.B. Cavalcante and J.B. Zornberg. Numerical Schemes to Solve Advective Contaminant Transport Problems with Linear Sorption and First Order Decay (2016). Electronic Journal of Geotechnical Engineering, Vol. 21, No 5, pp. 2043-2060. (http://www.caee.utexas.edu/prof/zornberg/pdfs/AJ/Cavalcante_Zornberg_2016.pdf). |
[18] | X. Zhao, Y. Chen, Z. Huang, Z. Hu and Y. Gao (2017). A numerical study of tsunami wave impact and run-up on coastal cliffs using a CIP-based model. Natural Hazards and Earth System Sciences, 17, 641–655. (https://pdfs.semanticscholar.org/000e/92a67436778b6e2a95b2e491dbbefe3c5b5b.pdf). |
[19] | J. K. Komia, J. Neal, M.A. Trigg and B. Diekkrüger (2017). Modelling of Flood Hazard Extent in Data Sparse Areas: a Case Study of The Oti River Basin, West Africa. Journal of Hydrology: Regional Studies 10, pp. 122–132. http://dx.doi.org/10.1016/j.ejrh.2017.03.001. |
[20] | M. Shaieqfrotan, C. Shaab, E. Nakaza, Y. Shimizu and M.T. Shoaibe (2018). Applicability of IRIC (Nays2D Flood) for the prediction of flash flood inundation area of Balkhab River. Proceedings of ISER 149th International Conference, Kyoto, Japan, 9th-10th August 2018. Pp 23-28. (http://u6.gg/ksid2). |
[21] | M.P. Hatta, V. Anggarallham and E. Aprianti (2019). Simulation of the Effect of Flow Velocity on Floating Sediment Concentration at the Jeneberang River Estuary with the Nays2DH Model. International Journal of Engineering Research and Application (www.ijera.com) ISSN: 2248-9622 Vol. 9, Issue 11 (Series -II) November 2019, pp. 01-07. |
[22] | K. Toshiharu and Ch. Narantsetseg (2019). Long Term Changes in Flooding around Gifu City. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic, pp. 421-427. https://doi.org/10.5194/isprs-archives-XLII-3-W8-421-2019. |
[23] | F. Y. Supomo, M.S. Pallu and R. Tahir (2019). Model of Peak Discharge Reduction Using Side Channel. International Journal of Civil Engineering and Technology (IJCIET). Volume 10, Issue 08, August 2019, pp. 137-146, Article ID: IJCIET_10_08_013. (http://www.iaeme.com/ijciet/). |
[24] | T. Komkong, S. Wongsa (2017). Impact of Heavy Rainfall Cause by Climate Change on Urban Area in Bangkok, Thailand. http://aseanacademicnetwork.com/node/Files/TA126-1.pdf. |
[25] | I. Takuya and I. Toshiki (2012). Nays2D Flood Solver Manual. iRIC Project, 1-25. http://iric.org/en/. |
[26] | J.M. Nelson, Y. Shimizu, T. Abe, K. Asahi, M. Gamou, T. Inoue, T. Iwasaki, T. Kakinuma, S. Kawamura, S. Kawamura, I. Kimura, T. Kyuka, R.R. McDonald, M. Nabi, M. Nakatsugawa, F.R. Simoes, H. Takebayashi and Y. Watanabe (2016). The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Advances in Water Resources, Volume 93, Part A, July 2016, Pages 62-74. https://doi.org/10.1016/j.advwatres.2015.09.017. |
[27] | M.A. Ali, I. Kimura, A.M. Abdelrazek and Y. Shimizu (2017). Large Scale Flood Modelling Using Hyper Grid Approach. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 73, No 4, I_319 – I_324, 2017. (http://u6.gg/ksid9). |