[1] | Nasim, N., Sandeep, I. S., Mohanty, S., 2022, Plant-derived natural products for drug discovery: current approaches and prospects., Nucleus (Calcutta), 65(3), 399-411. doi:10.1007/s13237-022-00405-3. |
[2] | Niazmand, R., Razavizadeh, B.M., 2021, Ferula asafoetida: chemical composition, thermal behavior, antioxidant and antimicrobial activities of leaf and gum hydroalcoholic extracts, J Food Sci Technol, 58(6), 2148-2159. doi: 10.1007/s13197-020-04724-8. |
[3] | Amalraj, A., Gopi, S., 2016, Biological activities and medicinal properties of Asafoetida: A review, J Tradit Complement Med, 7(3), 347-359. doi: 10.1016/j.jtcme.2016.11.004. |
[4] | Vocadlo, D.J., Davies, G.J., 2008, Mechanistic insights into glycosidase chemistry, Curr. Opin. Chem. Biol, 12, 539–555. doi: 10.1016/j.cbpa.2008.05.010. |
[5] | Tabassam S.M., Iqbal, Z, Jabbar, A., Sindhu Z., Chattha, A.I., 2008, Efficacy of crude neem seed kernel extracts against natural infestation of Sarcoptes scabiei var. ovis, Journal of Ethnopharmacology, 11(2), 284-287. doi.org/10.1016/j.jep.2007.10.003. |
[6] | Fatehi, M., Farifteh, F., Fatehi-Hassanabad, Z., 2004, Antispasmodic and hypotensive effects of Ferula asafoetida gum extract, J Ethnopharmacol, 91, 321–324. doi: 10.1016/j.jep.2004.01.002. |
[7] | Bagheri, S.M., Yadegari, M., Mirjalily, A., Rezvani, M.E., 2015, Evaluation of toxicity effects of asafetida on biochemical, hematological, and histological parameters in male Wistar rats, Toxicol, 22, 61–65. doi: 10.4103/0971-6580.172258. |
[8] | Dahlqvist, A., 1984, Assay of intestinal disaccharidases., Scand J Clin Lab Invest, 44(2), 169-72. doi: 10.3109/00365518409161400. |
[9] | Telagari, M., Hullatti, K., 2015, In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn, extracts and fractions, Indian J. Pharmacol, 47, 425-429. |
[10] | Derosa G, Maffioli, P., α-Glucosidase inhibitors and their use in clinical practice, 2012, Arch Med Sci, 8(5). 899-906. doi: 10.5114/aoms.2012.31621. |
[11] | Mahendra, P., Bisht, S., 2012, Ferula asafoetida: Traditional uses and pharmacological activity, Pharmacognosy Reviews, 6(12), 141-146. doi: 10.4103/0973-7847.99948. |
[12] | Saeidy, S., Nasirpour, A., Keramat, J., Desbrières, J., Cerf, D.L., Pierre, G., Delattre, C., Laroche, C., Baynast, H., Ursu, A.V., Marcati, A., Djelveh, G., Michaud, P., 2018, Characterization and thermal behavior of a gum extracted from Ferula assa foetida, L Carbohydrate Polymers, 18, 426-432. . |
[13] | Nyambe-Silavwe H., Williamson C., 2018, Chlorogenic and phenolic acids are only very weak inhibi-tors of human salivary α-amylase and rat intestinal maltase activities, Food Research International, 113, 452-455. doi.org/10.1016/j.foodres.2018.07.038. |
[14] | Ahmed, M.U., Ibrahim, A., Dahiru, N.J., Mohammed, H.S., 2020, Alpha amylase inhibitory potential and mode of inhibition of oils from allium sativum (garlic) and allium cepa (onion), Clin Med Insights Endocrinol Diabetes, 7(13). doi: 10.1177/1179551420963106. |
[15] | Mohammed, H.E., El-Nekeety, A.A., Rashwan, H.M., Ab-del-Aziem, SH., Hassan, N.S., Hassan, E.E., Abdel-Wahhab, M.A., 2024, Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity and cytotoxicity in rats, Toxicol Rep, 101853. doi: 10.1016/j.toxrep2024.101853. |
[16] | Iranshahi, M., Rezaee, R., Najaf, N.M., Haghbin, A., Kasaian, J., 2018, Cytotoxic activity of the genus Ferula (Apiaceae) and its bioactive constituents, Avicenna J Phytomed, 8(4). 296-312. |
[17] | Priscilla, D.H., Roy, D., Suresh, A., Kumar, V., Thirumurugan, K., 2014, Naringenin inhibits α-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats, Chem Biol Interact, 5(210), 77-85. doi: 10.1016/j.cbi.2013.12.014. |
[18] | August, K.T., Sheela, C.G., 1996, Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretatgogue, in diabetic rats, Experientia, 52, 115-120. |
[19] | Su, H., Ruan, Y-T., Li Y., Chen, J-G., Zhong-Ping Yin Z-P., Qing-Feng Zhang Q-F., 2020, In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes, International Journal of Biological Macromolecules, 150(1), 31-37. |
[20] | Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., Inoue, S., 1996, L-arabinose selectively inhibits intestinal sucrase in an un-competitive manner and suppresses glycemic response after sucrose ingestion in animals, Metabolism, 45(11), 1368-1374. doi: 10.1016/s0026-0495(96)90117-1. |
[21] | Krog- Mikkelsen, I., Hels, O., Tetens, I., Holst, J.J., Andersen, J.R., Bukhave, K., 2011, The effects of L-arabinose on intestinal sucrase activity: dose-response studies in vitro and in humans, Am J Clin Nutr., 94(2), 472-478. doi: 10.3945/ajcn.111.014225. |
[22] | Yuxue, Z., Jinhu, T., Wenhan, Y., Shiguo, Ch., Donghong, L., Haitian, F., Huiling, Z., Xingqian, Ye., 2020, Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase, Food Chemistry, 1(317), 126346. doi: 10.1016/j.foodchem.2020.126346. |
[23] | Ranđelović, S., Bipat, R., 2021, A Review of coumarins and coumarin-related compounds for their potential antidiabetic effect, Clin Med Insights Endocrinol Diabetes, 14(14), doi: 10.1177/11795514211042023. |
[24] | Oboh, G., Agunloye, O.M., Adefegha, S.A., Akinyemi, A.J., Ademiluyi, A.O., 2015, Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study, J Basic Clin Physiol Pharmacol, 26(2), 165-170. doi: 10.1515/jbcpp-2013-0141. |
[25] | Papada, E., 2025, The effects of terpenes on metabolism: a comprehensive review on recent updates, Curr Opin Clin Nutr Metab Care, 28(4), 323-329. |
[26] | Pereira, D.F., Cazarolli, L.H., Lavado, C., Mengatto, V., Figueire-do, M.S., Guedes, A., Pizzolatti, M.G., Silva, F.R., 2011, Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis, Nutrition, 27(11-12), 1161-1167. doi: 10.1016/j.nut.2011.01.008. |
[27] | Yan, Q.L., Feng, Ch.Z., Fei, G., Jun, Sh.B., Fang, Sh., 2009, Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase, Journal of Agricultural and Food Chemistry, 57(24), 11463-11468. doi: 10.1021/jf903083h. |
[28] | Vaou, N., Stavropoulou, E., Voidarou, C.C., Tsakris, Z., Rozos, G., Tsigalou, C., Bezirtzoglou, E., Interactions between medical plant-derived bioactive compounds: focus on antimicrobial combination effects, Antibiotics (Basel), 2022, 11(8), 1014. doi: 10.3390/antibiotics11081014. |
[29] | Alssema, M., Ruijgrok, C., Blaak, E.E., Egli, L., Dussort, P., Vinoy, S., Dekker, J.M., Denise, R.M., 2021, Effects of alpha-glucosidase-inhibiting drugs on acute postprandial glucose and insulin responses: a systematic review and meta-analysis., Nutr Diabetes., 11(1), 111. doi:10.1038/s41387-021-00152-. |
[30] | Kuchkarova, L. S., Kayumov, K. Y., Ergashev, N. A., andKudeshovа G. T., 2024, Effect of quercetin on the intestinal carbohydrases activity in the offspring of the lead intoxicated mother. journal of natural remedies, 24(02), 391–396. https://doi.org/10.18311/jnr/2024/. |
[31] | Standl, E., Schnell, O., 2012, Alpha-glucosidase inhibitors - cardiovascular considerations and trial evaluation, 2012, Diabetes Vasc. Dis. Res., 9, 163. |
[32] | Dzobo, K., 2022, The role of natural products as sources of therapeutic agents for innovative drug discovery, Comprehensive Pharmacology, 408-422. doi: doi:10.1016/B978-0-12-820472-6.00041-4. |