[1] | Aimikhe, V. J., Eyankware, O. E. 2019. Adsorbents for Noxious Gas Sequestration: State of the Art. Journal of Scientific Research & Reports, 25((1&2)), 1–21. https://doi.org/10.9734/JSRR/2019/v25i1-230176. |
[2] | Global CCS Institute. 2019. Global Status of CCS 2019: Targeting Climate Change. Melbourne. |
[3] | Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Mac Dowell, N. 2018. Carbon capture and storage (CCS): The way forward. Energy and Environmental Science, 11, 1062–1176. https://doi.org/10.1039/c7ee02342a. |
[4] | Mukherjee, A., Okolie, J. A., Abdelrasoul, A., Niu, C., & Dalai, A. K. 2019. Review of post-combustion carbon dioxide capture technologies using activated carbon. Journal of Environmental Sciences, 83, 46–63. https://doi.org/10.1016/j.jes.2019.03.014. |
[5] | Ooi, ZL; Tan, PY; Tan, LS; Yeap SP. 2020. Amine-based solvent for CO2 absorption and its impact on carbon steel corrosion: A perspective review. Chinese Journal of Chemical Engineering 28, 1357–1367. |
[6] | Pinto, D. D. D., Zahraee, Z., Buvik, V., Hartono, A., & Knuutila, H. K. 2019. Vapor-Liquid Equilibrium Measurements of Two Promising Tertiary Amines for CO2 Capture. Processes, 7 (951). |
[7] | Salvi, B.L.; Jindal, S. 2019. Recent developments and challenges ahead in carbon capture and sequestration technologies. SN Appl. Sci., 1, 885. |
[8] | Li, J., Wang, X., Zhao, G., Chen, C., Chai, Z., Alsaedi, A., Wang, X. 2018. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 47(7), 2322–2356. https://doi.org/10.1039/c7cs00543a. |
[9] | Abu Ghalia, M., Dahman, Y. 2017. Development and Evaluation of Zeolites and Metal–Organic Frameworks for Carbon Dioxide Separation and Capture. Energy Technology, 5(3), 356–372. https://doi.org/10.1002/ente.201600359. |
[10] | Sánchez-Zambrano, K. S., Duarte, L. L., Maia, D. A. S., Vilarrasa-García, E., Bastos-Neto, M., Rodríguez-Castellón, E., & Azevedo, D. C. S. de. 2018. CO2 Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Dessorption Cycles. Materials, 11(887). https://doi.org/10.3390/ma11060887. |
[11] | Sun, Y., Li, K., Zhao, J., Wang, J., Tang, N., Zhang, D., Jin, Z. 2018. Nitrogen and sulfur Co-doped microporous activated carbon macro-spheres for CO2 capture. Journal of Colloid and Interface Science, 526, 174–183. https://doi.org/10.1016/j.jcis.2018.04.101. |
[12] | Zeng H, Qu X, Xu D and Luo Y. 2022. Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Front. Chem. 10:939701. doi: 10.3389/fchem.2022.939701. |
[13] | Jiao, C., Majeed, Z., Wang, G. H., & Jiang, H. 2018. A nanosized metal-organic framework confined inside a functionalized mesoporous polymer: An efficient CO2 adsorbent with metal defects. Journal of Materials Chemistry A, 6(35), 17220–17226. https://doi.org/10.1039/c8ta05323e. |
[14] | Li, H., Qu, M., & Hu, Y. 2020. Preparation of spherical Li4SiO4 pellets by novel agar method for high- temperature CO2 capture. Chemical Engineering Journal, 380, 122538. https://doi.org/10.1016/j.cej.2019.122538. |
[15] | Geng, R., Lu, D., Lai, Y., Wu, S., Xu, Z., & Zhang, W. 2019. Peptide nanotube for carbon dioxide chemisorption with regeneration properties and water compatibility. Chem Comm. https://doi.org/10.1039/c9cc00495e. |
[16] | Wang, Yibing, Wang, J., Ma, C., Qiao, W., & Ling, L. 2018. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2018.08.063. |
[17] | Abdinejad, M; Ferrag, C; Hossain, MN; Noroozifar, M; Kerman K; Kraatz, HB. 2021. Capture and electroreduction of CO2 using highly efficient bimetallic Pd–Ag aerogels paired with carbon nanotubes. Journal of Materials Chemistry A. 9, 12870-12877. DOI. https://doi.org/10.1039/D1TA01834E. |
[18] | Li L, Zhang C, Chen Y, Liu X. 2022. The use of nanoparticles for high-efficiency CO2 capture by methanol. Journal of CO2 Utilization 66, 102299. https://doi.org/10.1016/j.jcou.2022.102299. |
[19] | Elhambakhsh A, Heidari S, Keshavarz P. 2022. Experimental study of carbon dioxide absorptionby Fe2O3@glutamine/NMP nanofluid. Environmental Science and Pollution Research, 29:1060–1072. https://doi.org/10.1007/s11356-021-15650-3/. |
[20] | Abo-hamad, A., Hayyan, M., Alsaadi, M. A., Mirghani, M. E. S., & Hashim, M. A. 2016. Functionalization of carbon nanotubes using eutectic mixtures: A promising route for enhanced aqueous dispersibility and electrochemical activity. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2016.11.108. |
[21] | Li, Y., Zou, B., Hu, C., & Cao, M. 2016. Nitrogen-doped porous carbon nano- fiber webs for efficient CO2 capture and conversion. Carbon, 99, 79–89. https://doi.org/10.1016/j.carbon.2015.11.074. |
[22] | Su, F., Lu, C., Cnen, W., Bai, H., & Feng, J. 2009. Capture of CO2 from flue gas via multiwalled carbon nanotubes. Science of the Total Environment, 407, 3017–3023. https://doi.org/10.1016/j.scitotenv.2009.01.007. |
[23] | Kudinalli, L., Bhatta, G., Subramanyam, S., Madhusoodana, C. D., Bhatta, U. M., Prasad, R., Venkatesh, K. 2016. Layered double hydroxides/multi-walled carbon nanotubes – based composite for high temperature CO2 adsorption. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.6b00141. |
[24] | Hu J, Liu Y, Liu J, Gu C. 2017. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: the significant role of functional groups. Fuel, 200: 244–251. |
[25] | Keller, L., Ohs, B., Abduly, L., & Wessling, M. 2018. Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO2 capture. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2018.11.100. |
[26] | Zulkurnai, N. Z., Md Ali, U. F., Ibrahim, N., & Abdul Manan, N. S. 2018. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon. E3S Web of Conferences, 34. https://doi.org/10.1051/e3sconf/20183402030. |
[27] | Hutanu, D., Frishberg, M. D., Guo, L., & Darie, C. C. 2016. Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives. Mod Chem Appl, 2 (132). https://doi.org/10.4172/2329-6798.1000132. |
[28] | Altamash, T; Amhamed, A; Aparicio, S; Atilhan M. 2020. Effect of Hydrogen Bond Donors and Acceptors on CO2 Absorption by Deep Eutectic Solvents. Processes, 8, 1533; doi:10.3390/pr8121533/. |
[29] | Li, Z., Sun, W., Chen, C., Guo, Q., Li, X., Gu, M., Guan, G. 2019a. Deep eutectic solvents appended to UiO-66 type metal organic frameworks: Preserved open metal sites and extra adsorption sites for CO2 capture. Applied Surface Science, 480, 770–778. https://doi.org/10.1016/j.apsusc.2019.03.030. |
[30] | Azcona SR; Atilhan M; Aparicio S. 2022. Bulk Liquid Phase and Interfacial Behavior of Cineole – Based Deep Eutectic Solvents with Regard to Carbon Dioxide. Journal of MolecularLiquids. 353(21): 118748. DOI: 10.1016/j.molliq.2022.118748. |
[31] | Shiue, A.; Yin, M.-J.; Tsai, M.-H.; Chang, S.-M.; Leggett, G. 2021. Carbon Dioxide Separation by Polyethylene Glycol and Glutamic Acid/Polyvinyl Alcohol Composite Membrane. Sustainability, 13, 13367. https://doi.org/10.3390/su132313367. |
[32] | Younas, M., Sohali, M., Leong, L. K., Bashir, M. J., & Sumathi, S. 2016. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. International Journal of Environmental Science and Technology, 13, 1839–1860. https://doi.org/10.1007/s13762-016-1008-1. |
[33] | Wang L; Al-Aufi M; Pacheco CN; Xie; Rioux RM. 2019. Polyethylene Glycol (PEG) Addition to Polyethylenimine (PEI)-Impregnated Silica Increases Amine Accessibility during CO2 Sorption. ACS Sustainable Chemistry & Engineering. 7 (17), 14785-14795DOI: 10.1021/acssuschemeng.9b02798. |
[34] | Anisha, A. D., & Shegokar, R. 2016. Expert Opinion on Drug Delivery Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery, 13(9), 1257–1275. https://doi.org/10.1080/17425247.2016.1182485. |
[35] | Aimikhe, V.J and Eyankware, O.E. 2021. Design, Fabrication, and Validation of a Flow Loop for CO2 Adsorption Studies. Petroleum and Coal. 63(3):824 – 832. |
[36] | Xiao-Di W; Vinodgopal K; Gui-Ping. 2019. Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. In book: Perspective of Carbon Nanotubes [Working Title]. DOI: 10.5772/intechopen.86995. |
[37] | Babaei, M., Anbia, M., & Kazemipour, M. 2019. Study of the Effect of Functionalization of Carbon Nanotubes on Gas Separation. Brazilian Journal of Chemical Engineering, 36(04), 1613–1620. |
[38] | Kang G; Zhang B; Kang T; Guo J; Zhao G. 2020. Effect of Pressure and Temperature on CO2/CH4 Competitive Adsorption on Kaolinite by Monte Carlo Simulations. Materials 13, 2851; doi:10.3390/ma13122851. |
[39] | Akpasi SO; Isa YM. 2022. Effect of operating variables on CO2 adsorption capacity of activated carbon, kaolinite, and activated carbon – Kaolinite composite adsorbent. Water-Energy Nexus 5, 21–28. |
[40] | Kazemi, S., & Safarifard, V. 2018. Carbon dioxide capture in MOFs: The effect of ligand functionalization. Polyhedron, 154, 236–251. https://doi.org/10.1016/j.poly.2018.07.042. |
[41] | Yang, J., Yan, X., Xue, T., & Liu, Y. 2016. Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework. RSC Advances, 6(60), 55266–55271. https://doi.org/10.1039/c6ra09350g. |
[42] | Mukhtar, A., Mellon, N., Saqib, S., Khawar, A., Rafiq, S., Ullah, S., Al-Sehemi, A.G., Babar, M., Bustam, M.A., Khan, W.A., Tahir, M.S., 2020. CO2/CH4 adsorption over functionalized multi-walled carbon nanotubes; an experimental study, isotherms analysis, mechanism, and thermodynamics. Microporous Mesoporous Mater. 294, 109883. |
[43] | Hu, H., Zhang, T., Yuan, S., & Tang, S. 2016. Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption. Adsorption. https://doi.org/10.1007/s10450-016-9820-y. |
[44] | Zhou, Z., Balijepalli, S.K., Nguyen-Sorenson, A.H.T., Anderson, C.M., Park, J.L., Stowers, K.J., 2018. Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture. Energy Fuels 32, 11701–11709. |
[45] | Jena, K.K., 2019. MWCNTs-ZnO-SiO2 mesoporous nano-hybrid materials for CO2 capture. J. Alloys Compd. 800, 279-285. |