[1] | M. Tian, Lignocellulosic Octane Boosters, 2016. |
[2] | H. Yuan, ETBE as an additive in gasoline: advantages and disadvantages, Linköpings Universitet, 2006. |
[3] | X. Zhen, Y. Wang, S. Xu, Y. Zhu, C. Tao, T. Xu, M. Song, The engine knock analysis - An overview, Appl. Energy. 92 (2012) 628–636. https://doi.org/10.1016/j.apenergy.2011.11.079. |
[4] | A. Demirbas, M.A. Balubaid, A.M. Basahel, W. Ahmad, M.H. Sheikh, Octane Rating of Gasoline and Octane Booster Additives, Pet. Sci. Technol. 33 (2015) 1190–1197. https://doi.org/10.1080/10916466.2015.1050506. |
[5] | W.R. Leppard, The chemical origin of fuel octane sensitivity, SAE Tech. Pap. (1990). https://doi.org/10.4271/902137. |
[6] | B. Kovarik, Charles F. Kettering and the development of tetraethyl lead in the context of alternative fuel technologies, SAE Tech. Pap. (1994). https://doi.org/10.4271/941942. |
[7] | T. Topgül, The effects of MTBE blends on engine performance and exhaust emissions in a spark ignition engine, Fuel Process. Technol. 138 (2015) 483–489. https://doi.org/10.1016/j.fuproc.2015.06.024. |
[8] | G. Oudijk, The Rise and Fall of Organometallic Additives in Automotive Gasoline, Environ. Forensics. 11 (2010) 17–49. https://doi.org/10.1080/15275920903346794. |
[9] | J.O. Nriagu, The rise and fall of leaded gasoline, Sci. Total Environ. 92 (1990) 13–28. https://doi.org/10.1016/0048-9697(90)90318-O. |
[10] | B. Afotey, Impact Assessment of Metal-Based Octane Boosters: A Literature Review, Int. J. Energy Eng. 8 (2018) 67–88. https://doi.org/10.5923/j.ijee.20180803.03. |
[11] | J.M. Lyons, Impacts of MMT® Use in Unleaded Gasoline on Engines, Emission Control Systems, and Emissions, Report No. (2008). |
[12] | K. Blumberg, M.P. Walsh, K. Colburn, A.C. Lloyd, Status Report Concerning the Use of MMT in Gasoline, 2004. |
[13] | A. Kameoka, K. Tsuchiya, Influence of Ferrocene on Engine and Vehicle Performance, in: SAE Tech. Pap., 2006. https://doi.org/10.4271/2006-01-3448. |
[14] | W.C. Cooper, The health implications of increased manganese in the environment resulting from the combustion of fuel additives: A review of the literature, J. Toxicol. Environ. Health. 14 (1984) 23–46. https://doi.org/10.1080/15287398409530561. |
[15] | R.J. Minjares, Methylcyclopentadienyl Manganese Tricarbonyl (MMT): A Science and Policy Review Authors, 2009. |
[16] | S.K. Hoekman, A. Broch, MMT Effects on Gasoline Vehicles: A Literature Review, SAE Int. J. Fuels Lubr. 9 (2016) 322–343. https://doi.org/10.4271/2016-01-9073. |
[17] | L.M. Gibbs, Gasoline Additives - When and Why, in: SAE Tech. Pap., 1990. https://doi.org/10.4271/902104. |
[18] | J.H. Gary, G.E. Handwerk, Petroleum Refining, 5th Editio, CRC Press, Boca Raton, 2007. https://doi.org/10.4324/9780203907924. |
[19] | EFOA, Technical Product Bulletin ETBE (Cas number 637-92-3), 2006. http://www.petrochemistry.eu/ftp/pressroom/ETBE Product Bulletin Jun 2006.pdf. |
[20] | H. Hamid, MTBE and Other Gasoline Oxygenates, in: Handb. MTBE Other Gasol. Oxyg., Marcel Dekker, Inc, 2004. |
[21] | J. Kjølholt, L. Andersen, S.H. Mikkelsen, C.N. Jeppesen, A.J. Clausen, Survey of MTBE, 2014. http://www2.mst.dk/Udgiv/publications/2014/01/978-87-93026-94-0.pdf. |
[22] | P.B. Larsen, Evaluation of health hazards by exposure to Methyl tertiary-butyl ether (MTBE), 1998. |
[23] | M.J. van der Waals, C. Plugge, M. Meima-Franke, P. de Waard, P.L.E. Bodelier, H. Smidt, J. Gerritse, Ethyl tert-butyl ether (EtBE) degradation by an algal-bacterial culture obtained from contaminated groundwater, Water Res. 148 (2019) 314–323. https://doi.org/10.1016/j.watres.2018.10.050. |
[24] | E.R. Nesbitt, C. Robinson, R.L. Cantrell, C.B. Foreso, K. Lahey, T. Joann, N. Benjamin, M.J. Ferrantino, J. Tsao, T. Potuto, T. Felton, Methyl Tertiary-Butyl Ether (MTBE): Conditions Affecting the Domestic Industry, 1999. |
[25] | J. Kokko, L. Rantanen, J. Pentikäinen, T. Honkanen, P. Aakko, M. Lappi, Reduced particulate emissions with reformulated gasoline, SAE Tech. Pap. (2000). https://doi.org/10.4271/2000-01-2017. |
[26] | H. Croezen, B. Kampman, The impact of ethanol and ETBE blending on refinery operations and GHG-emissions, Energy Policy. 37 (2009) 5226–5238. https://doi.org/10.1016/j.enpol.2009.07.072. |
[27] | I. Schifter, U. González, C. González-Macías, Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine, Fuel. 183 (2016) 253–261. https://doi.org/10.1016/j.fuel.2016.06.051. |
[28] | M.M. Osman, Relationship Between Gasoline Anti-knock Agents, Gasoline Aromatics Content and SI Engine Emissions, in: SAE Tech. Pap., 1996. https://doi.org/10.4271/961225. |
[29] | G.A. Westphal, J. Krahl, T. Brüning, E. Hallier, J. Bünger, Ether oxygenate additives in gasoline reduce toxicity of exhausts, Toxicology. 268 (2010) 198–203. https://doi.org/10.1016/j.tox.2009.12.016. |
[30] | S. Diana, V. Giglio, B. Iorio, G. Police, The Influence of Fuel Composition on Pollutant Emission of Premixed Spark Ignition Engines in Presence of EGR, in: SAE Tech. Pap., 1998. https://doi.org/10.4271/982621. |
[31] | I. Schifter, U. González, L. Díaz, C. González-Macías, I. Mejía-Centeno, Experimental and vehicle (on road) test investigations of spark-ignited engine performance and emissions using high concentration of MTBE as oxygenated additive, Fuel. 187 (2017) 276–284. https://doi.org/10.1016/j.fuel.2016.09.044. |
[32] | X. Liu, S. Ito, Y. Wada, Oxidation characteristic and products of ETBE (ethyl tert-butyl ether), Energy. 82 (2015) 184–192. https://doi.org/10.1016/j.energy.2015.01.026. |
[33] | L. Chatin, C. Fombarlet, C. Bernasconi, A. Gauthier, P. Schmelzle, ETBE as a gasoline blending component: The experience of elf aquitaine, SAE Tech. Pap. (1994). https://doi.org/10.4271/941860. |
[34] | S.H. Hamid, M.A. Ali, Effect of MTBE blending on the properties of gasoline, Fuel Sci. Technol. Int. 13 (1995) 509–544. https://doi.org/10.1080/08843759508947692. |
[35] | ASTM, Annual Book of ASTM Standards, 1989. |
[36] | A. Drews, Manual on Hydrocarbon Analysis, 6th Edition, 6th ed., 1998. https://doi.org/10.1520/mnl3-6th-eb. |
[37] | R. Da Silva, R. Cataluña, E.W. De Menezes, D. Samios, C.M.S. Piatnicki, Effect of additives on the antiknock properties and Reid vapor pressure of gasoline, Fuel. 84 (2005) 951–959. https://doi.org/10.1016/j.fuel.2005.01.008. |
[38] | E.W. de Menezes, R. Cataluña, D. Samios, R. da Silva, Addition of an azeotropic ETBE/ethanol mixture in eurosuper-type gasolines, Fuel. 85 (2006) 2567–2577. https://doi.org/10.1016/j.fuel.2006.04.014. |
[39] | E.W. De Menezes, R. Da Silva, R. Cataluña, R.J.C. Ortega, Effect of ethers and ether/ethanol additives on the physicochemical properties of diesel fuel and on engine tests, Fuel. 85 (2006) 815–822. https://doi.org/10.1016/j.fuel.2005.08.027. |
[40] | S. Babazadeh Shayan, S.M. Seyedpour, F. Ommi, Effect of oxygenates blending with gasoline to improve fuel properties, Chinese J. Mech. Eng. 25 (2012) 792–797. https://doi.org/10.3901/CJME.2012.04.792. |
[41] | E.A.E. Sheet, New Anti-knock Additives to Improve Gasoline Octane Number, J. Pet. Res. Stud. (2011) 1–14. |
[42] | C.S. Cragoe, Thermal Properties of Petroleum Products, 1933. |
[43] | A. Goldaniga, T. Faravelli, E. Ranzi, P. Dagaut, M. Cathonnet, Oxidation of oxygenated octane improvers: MTBE, ETBE, DIPE, and TAME, Symp. Combust. 27 (1998) 353–360. https://doi.org/10.1016/S0082-0784(98)80423-2. |
[44] | R.C.C. Pereira, V.M.D. Pasa, Effect of mono-olefins and diolefins on the stability of automotive gasoline, Fuel. 85 (2006) 1860–1865. https://doi.org/10.1016/j.fuel.2006.01.022. |