[1] | F. Agyenim, N. Hewitt, Ph. Eames and. M. Smyth, “ A review of materials, heat transfer and phase change problem storage systems (LHTESS)”, Renewable and Sustainable Energy Reviews, 14, 615-628, 2010. |
[2] | Murat M. Kenisarin, “High-temperature phase change materials for thermal energy storage”, Renewable and Sustainable Energy Reviews, 14, 955–970, 2010. |
[3] | L. Yaxue, J. Yuting, G. Alva, G. Fang, “Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage”, Renewable and Sustainable Energy Reviews , 82(3), 32730-2742, 2018. |
[4] | L. Fan, J.M. Khodadadi, “Thermal conductivity enhancement of phase change materials for thermal energy storage, A review”, Renewable and Sustainable Energy Reviews, 15, 24–46, 2011. |
[5] | S. Jgadheeswarn, S.D Pohekar, “Energy and exergy analysis of particle dispersed latent heat storage system”, Int. J of Energy, 1(3), 445-458, 2010. |
[6] | Min Li, “A nano-graphite/Paraffine phase change material with high thermal conductivity”, Applied Energy, 106, 25-35 , 2013. |
[7] | E. S. Mettawee, G.M.R. Assassa, “Thermal conductivity enhancement in a latent heat storage system”, Solar Energy, 81, 839–845, 2007. |
[8] | M. Gharebaghi, I. Sezai, “Enhancement of heat transfer in latent heat storage modules with internal fins”, Numerical Heat Transfer Part A-Appl., 53(7)749-765, 2008. |
[9] | N. Sharifi, L. Theodore Bergman and A. Faghri, “Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces”, Int. J. of Heat and Mass Transfer, 54, 4182-4192, 2011. |
[10] | F. Sciacovelli, F. Gagliardi and V. Verda, “Maximization of performance of a PCM latent heat storage system with innovative fins”, Applied Energy, 707-7015, 2014. |
[11] | A. Abduljalil Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A. Th Mohammad, “Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins”, Energy and Buildings, 68, 33–41, 2014. |
[12] | H. Shabgard, L.T Bergman, N. Sharifi, A. Fagari, “High temperature latent heat thermal energy storage using Heat pipes”, Int. J. Heat and Mass Transfer, 53(15-16) 2979-2988, 2010. |
[13] | C.W. Robak, Th. L. Bergman, A. Faghri, “Enhancement of latent heat energy storage using embedded heat pipes”, International Journal of Heat and Mass Transfer, 54(15), 3476–3484, 2011. |
[14] | Nourouddin Sharifi a, Theodore L. Bergman b, Michael J. Allen a, Amir Faghri, Melting and solidification enhancement using a combined heat pipe, foil approach, International Journal of Heat and Mass Transfer, 78, 930–941 (2014). |
[15] | W. Li, R. Hou, H. Wan, P. Liu, G. He, F. Qin, “A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam”, Solar Energy Materials and Solar Cells, 171, 197–204, 2017. |
[16] | N. Lakshmi Narasimhan, R. Bharath, Sarah Ann Ramji, M. Tarun, A. Siddarth Arumugam, “Numerical studies on the performance enhancement of an encapsulated thermal storage unit”, International Journal of Thermal Sciences, 84, 184-195, 2014. |
[17] | X. Tong, J.A. Khan, M.R. Amin., “Enhancement of heat transfer by inserting a metal matrix into a phase change material”, Numerical Heat Transfer, Part A 30:125–41, 1996. |
[18] | X. Py, R. Olives, S. Maurin, “Paraffin/Porous-Matrix-Composite as high and constant power thermal energy storage material”, International Journal of Heat and Mass Transfer, 44, 2727-2737, 2001. |
[19] | O. Mesalhy, K. Lafdi, A. Elgafy, K. Bowman, “Numerical study of enhancing the thermal conductivity of a phase change material (PCM) storage using high thermal conductivity porous matrix”, Energy Conversion and Management, 46, 847-867, 2005. |
[20] | Z. Liu, Y. Yao, H. Wu, “Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage”, Applied Energy, 112, 1222–1232, 2013. |
[21] | T. Kim, D. M. France, W. Yu, W. Zhao, D. Singh, “Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power”, Solar Energy, 103, 438–447, 2014. |
[22] | Z. Li, Z. Wu, “Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix”, Solar Energy, 99, 172–184, 2014. |
[23] | S. Humaira Tasnim, R. Hossain, S.l Mahmud, A. Dutta, “Convection effect on the melting process of nano-PCM inside porous enclosure”, International Journal of Heat and Mass Transfer, 85, 206–220, 2015. |
[24] | Z. Deng, X. Liu, Ch. Zhang, Y. Huang, Y. Chen, “Melting behaviors of PCM in porous metal foam characterized by fractal geometry”, International Journal of Heat and Mass Transfer, 113, 1031–1042, 2017. |
[25] | M. Esapour, A. Hamzehnezhad, A.A Rabienataj Darzi, M. Jourabian, “Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system”, Energy Conversion and Management, 171, 398–410, 2018. |
[26] | M. Jourabian, A.A Rabienataj Darzi, D. Toghraie and O.A Akbari, “Melting process in porous media around two hot cylinders, Numerical study using the lattice Boltzmann method”, Physica A, 509, 316–335 (2018). |
[27] | Lei Wan, “Numerical investigation of directional solidification processes using a volume averaging technique. Thesis, Cornell University, January (2003). |
[28] | A.D Brent, VR Voller, KJ Reid, “Enthalpy-porosity technique for modelling convection -diffusion phase change application to the melting of pure metal”, Num Heat transfer, 13,297-318, 1988. |
[29] | B.R Baliga, S.V Patankar, “A new finite-element formulation for convection-diffusion problems”, Numerical Heat Transfer, 3, 393-409, 1980. |
[30] | R. Bennacer, A. Tobbal, H. Béji, “Convection naturelle thermosolutale dans une cavité poreuse anisotrope : formulation de Darcy-Brinkman”, Revue. Energy. Renouvelable., 5, 1-21, 2002. |
[31] | G.Lauriat V. Prasad, “Natural convection in a vertical porous cavity: a numerical study for brinkman-extended Darcy formulation”. J. Heat Transfer, 109, 688-696, 1987. |
[32] | C. Gau, R. Viskanta, “Melting and solidification of a pure metal on a vertical wall”, Journal of heat Transfer, 8,174-181, 1986. |
[33] | J.M. Khodadadi, S.F. Hosseinizadeh, “Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage”, Int. Commun. Heat Mass Transfer, 34, 534–543, 2007. |
[34] | S.M. Manar, Al-Jethelah, S. Humaira Tasnim, S. Mahmud, A. Dutta, “Melting of nano-phase change material inside a porous enclosure”, International Journal of Heat and Mass Transfer, 102, 773–787, 2016. |
[35] | M. Mbaye, E. Bilgen, “Phase change process by natural convection-diffusion in rectangular enclosure”, Heat and Mass Transfer, 37, 35-42, 2001. |
[36] | Y. Zhu, B. Huang, J. Wu, “Optimization of filler distribution for organic phase change material composites: Numerical investigation and entropy analysis”, Applied Energy, 132, 543-550, 2014. |