[1] | P. W. Kruse, ‘’Uncooled Thermal Imaging: Arrays, Systems, and Applications,’’ SPIE Press, Bellingham, 2002. |
[2] | G. Karunasiri, "Real time THz camera using microbolometer focal plane array," presented at the 7th Int. Conf. on Technol. & the Mine Problem, Monterey, CA, 2-4 May 2006. |
[3] | A. W. M. Lee, and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563-2565 (2005). |
[4] | M. Lowe, Imaging of 3.4 THz Quantum Cascade Laser Beam using Uncooled Microbolometer Camera, M.S. thesis, Naval Postgraduate School, Dec. 2006. |
[5] | B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Realtime imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33, 440-442 (2008). |
[6] | Infrared Solutions, Inc. IR-160 Thermal Imager product information sheet (2004). |
[7] | C. Bolakis, D. Grbovic, N. V. Lavrik and G. Karunasiri, ‘’Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films,’’ Opt. Express 18, 14488-14495 (2010). |
[8] | C. Bolakis, I.S. Karanasiou, D. Grbovic, G. Karunasiri and N. Uzunoglu “Optimizing detection methods for terahertz bio imaging applications,’’ Opt. Engineering 54, 067107 (2015). |
[9] | A. A. Kovalevskii, A. V. Dolbik, S.N. Voitekh “Effect of Doping on the Temperature Coefficient of Resistance of Polysilicon Films,’’ Belarussian State University of Informatics and Radioelectronics, Minsk, Belarus, Vol. 36 No. 3 (2007). |
[10] | J. Mullerova, S. Jurecka, P. Sutta “Optical characterization of polysilicon thin films,’’ Article in press, ELSEVIER (2005). |
[11] | Born and Wolf, Principles of Optics, 7th edition (expanded), Cambridge (1999). |
[12] | Richard Feynman, the Feynman lectures on physics, new millennium edition (2nd volume), California institute of technology, pp 3211-3213 (2010). |
[13] | P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard Method to an Absorbing Thin-film Stack and Application to Surface Plasmon Resonance”, Applied Optics 45, 8419–8423 (2006). |
[14] | F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007). |
[15] | B. N. Behnken, “Real-time terahertz imaging using a quantum cascade laser and uncooled microbolometer focal plane array,” PhD Dissertation, Naval Postgraduate School, Monterey, CA (2008). |
[16] | T. Akin et al., “CMOS-based thermal sensors,” Adv. Micro Nanosyst. 2, 280–498 (2005). |
[17] | M. Kohin and N. Buttler, “Performance limits of uncooled VOx microbolometer focal plane arrays,” Proc. SPIE 5406, 447–453 (2004). |
[18] | P. W. Kruse, “Can the 300 K radiating background noise limit be attained by uncooled thermal imagers?” Proc. SPIE 5406, 437–446 (2004). |
[19] | S. Yoneoka, M. Liger, G. Yama, R. Schuster, F. Purkl, “ALD –Metal uncooled bolometer,’’ Stanford Uni. IEEE, Cancun, MEXICO (2011). |
[20] | J. Vancea, H. Hoffmann, and K. Kastner, “Mean free path and effective density of conduction electrons in polycrystalline metal films,” Thin Solid Films, vol. 121, pp. 201-216 (1984). |
[21] | M. A. Dem’yanenko, “Infrared absorption in a multilayer bolometric structure with a thin metallic absorber,” Journal of Optical Technology, Vol. 84, pp. 34-40 (2017). |
[22] | P. Vybornov, “Prospects of Uncooled Metal Bolometers,’’ IEEE Photonics Technology Letters (2019). |
[23] | A. Banerjee et al., “Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna-coupled terahertz microbolometer,’’ Japanese Journal of Applied Physics (2017). |
[24] | M. Lutful Hai et al., “Amorphous SixGeyO1−x−y thin films for uncooled infrared microbolometers,’’ Elsevier Infrared Physics & Technology, Vol. 95, pp. 227-235 (2018). |
[25] | S. Chen, H. Ma, S. Xiang, X. Yi, “Fabrication and performance of microbolometer arrays based on nanostructured vanadium oxide thin films,” Smart Mater. Struct., Vol.16, pp.696-700 (2007). |
[26] | YZheng-Yuan Wu et al., “Infrared response of vanadium oxide (VOx)/SiNx/reduced graphene oxide (rGO) composite microbolometer,’’ Elsevier Microelectronics Reliability, Vol. 91, pp. 313-318 (2018). |
[27] | M. Aggoun, J. Jiang, M. K. Khan, “Infrared absorption modeling of VOx microbolometer,’’ School of Optoelectronics, Beijing Institute of Technology, Proc. of SPIE Vol. 9620 (2015). |
[28] | B. Wang, et. al., Vanadium oxide microbolometer with gold black absorbing layer, Opt. Eng. 51(7), 074003 (2012). |
[29] | E. Awad, N. Al-Khalli, M. Abdel-Rahman, N. Debbar, and M. Alduraibi, "Comparison of V2O5 microbolometer optical performance using NiCr and Ti thin-films," IEEE Photonics Technology Letters, vol. PP, 99 (2014). |
[30] | A. E. Lange, E. Kreysa, S. E. McBride, and P. L. Richards, Improved fabrication techniques for infrared bolometers, International Journal of Infrared and Millimeter Waves, Vol. 4, No. 5 (1983). |
[31] | M. Almasri, et. al., Amorphous Silicon Two-Color Microbolometer for uncooled IR Detection, IEEE Sensors Journal, 6, NO. 2 (2006). |
[32] | F. Genereux et al., “Small uncooled bolometers with a broad spectral response,’’ SPIE Infrared Technology and Applications Proceedings, Vol. 10624, USA (2018). |
[33] | W. Meng et al., “An ultra-broadband and polarization-independent metamaterial absorber with bandwidth of 3.7 THz,’’ Elsevier Optics Communications, Vol. 431, pp. 255-260 (2019). |
[34] | I. E. Carranza et al., “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays,’’ IEEE Journal of Selected Topics in Quantum Electronics, University of Glasgow (2016). |