[1] | World Health Organization. The Alcohol, Smoking and Substance Involvement Screening Test (ASSIST): Manual for use in primary care. WHO. Geneva. 2010. |
[2] | The United Nations Office on Drugs and Crime. World Drug Report. UNODC. New York. 2011. |
[3] | The United Nations Office on Drugs and Crime. Situation Assesment of Amphetamine Type Stimulants. Indonesia. 2013. |
[4] | BNN. Laporan Tahunan Seksi Rehabilitasi Medis. Baddoka. 2015. |
[5] | BNN. Laporan Tahunan Seksi Rehabilitasi Medis. Baddoka. 2016. |
[6] | Brecht ML, Herbeck D. Time to relapse following treatment for methamphetamine use: along-term perspective on patterns and predictors. Drug Alcohol Depend Journal. 2014; 139: 18–25. |
[7] | Lijffijt M, Hu K, Swann, AC. Stress Modulates illness-course of substance use disorders : a translational review. Frontriers in Psychiatry 2014; 5: 83. |
[8] | Carson DS, Bosanquet DP, Carter CS, Pournajafi NH, Blaszcyzynski A. and McGregor, I.S. 2012. Preliminary evidence for lowered basal cortisol in a naturalistic sample of methamphetamine polydrug users. Exp. Clin. Psychopharmacology. 2012. 20(6): 497-503. |
[9] | Li SX, Yan SY, Bao YP, Lian Z, Qu Z, Wu YP, Liu ZM. Depression and alterations in hypothalamic-pituitary-adrenal and hypothalamic-pituitary- thyroid axis function in male abstinent methamphetamine abusers. Hum. Psychopharmacol. 2013; 28: 477–483. |
[10] | Zuloaga DG, Jacobskind JS, Raber J. Methamphetamine and the hyphothalamic-pituitary-adrenal axis. Front Neuroscience. 2015; 9: 233. |
[11] | Sulzer D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron.2011; 69: 628–649. |
[12] | Weinshenker D, Schroeder JP. There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology. 2007; 32: 1433-1451. |
[13] | Colfax GN, Santos GM, Das M, Santos DM, Matheson, T, Gasper J, Shoptaw S, Vittinghoff E. Mirtazapine to reduce methamphetamine use: a randomized controlled trial. Arch. Gen. Psychiatry. 2011; 68: 1168–1175. |
[14] | Newton TF, De La Garza R, Brown G, Kosten TR., Mahoney JJ, Haile CN. Noradrenergic alpha(1) receptor antagonist treatment attenuates positive subjective effects of cocaine in humans: a randomized trial. PloS One.2012;7(2):e30854. |
[15] | Nater UM, Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009; 34:486–496. |
[16] | Thoma MV, Kirschbaum C, Wolf JM, Rohleder N. 2012. Acute stress responses in salivary alpha amylase predict increases of plasma norepinephrine. Biol. Psychol. 2012; 91: 342–348. |
[17] | Ehlert U, Erni K, Hebisch G, Nater U. Salivary alpha-amylase levels after yohimbine challenge in healthy men. J. Clin. Endocrinol. Metab. 2006; 91: 5130–5133. |
[18] | Van Stegeren A, Rohleder N, Everaerd W, Wolf OT. Salivary alpha amylase as marker for adrenergic activity during stress: effect of betablockade. Psychoneuroendocrinology. 2006; 31: 137–141. |
[19] | Haile CN, De La Garza R, Mahoney JJ, Newton TF. Effects of methamphetamine on the noradrenergic activity biomarker salivary alpha-amylase. Drug Alcohol Depend. 2013; 133(2): 759–762. |
[20] | Yamaguchi M, Kanemori T, Kanemaru M, Takai N, Mizuno Y, Yoshida H. Performance evaluation of salivary amylase activity monitor. Biosens Bioelectron. 2004; 20: 491-7. |
[21] | Yamaguchi M, Wakasugi J, Ono S, Takai N, Higashi T, et al. Hand-held monitor of symphatetic nervous system using salivary amylase activity and its validation by driver fatique assessment. Biosens Bioelectron 2006; 21: 1007-14. |
[22] | Nater, U.M., Rohleder, N., Sclotz, W., Ehlert, U. and Kirschbaum, C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007; 32: 392-401. |
[23] | Nater, U.M., Marca, R.L., Florin, L., Moses, A., Langhans, W., Koller M.M., Ehlert, U. 2006. Stress-induced changes in human salivary alpha amylase activity-associations with adrenergic activity. Psychoneuroendocrinology. 31:49-58. |
[24] | Yamaguchi M, Wakasugi J, Sakakima J. Competitive and product inhibition-based α-amylase activity analysis method. Clin.Biochem 2008; 41: 325-30. |
[25] | Durell, T.M., Kroutil, L.A., Christoph, P.C., Barchha, N. and Brunt, DLV. 2008. Prevalence of nonmedical methamphetamine use in the United States. Subtance Abuse Treatment, Prevention and Policy. 3: 19. |
[26] | SAMHSA. Results from the 2012 National Survey on Drug Use and Health: Summary of National Findings. Rockville. 2013. |
[27] | Green, C.A. Gender and Use of Substance Abuse Treatment Services. The Journal of The National Institute on Alcohol Abuse and Alcoholism. 2006;. 29(1): 55-62. |
[28] | BNN. Hasil penelitian BNN tentang survei nasional pencegahan dan pemberantasan penyalahgunaan dan peredaran gelap narkoba pada kelompok pekerja di 33 propinsi di Indonesia. Jakarta. 2012. |
[29] | Klein, L.C., Whetzel, C.A., Bennett, J.M., Ritter, F.E., Nater, U.M. and Schoelles, M. Caffeine administration does not alter salivary α-amylase activity in young male daily caffeine consumers. BMC Research Notes.2014; 7:30. |
[30] | Bennett JM., Rodrigues IM, and Klein LC. Effects of caffeine and stress on biomarkers of cardiovascular disease in healthy men and women with a family history of hypertension. Stress Health. 2013; 29:401–409. |
[31] | Sudano, I., Spieker, L., Binggeli, C., Ruschitzka, F., Lüscher, T.F., Noll, G. and Corti, R. Coffee blunts mental stress-induced blood pressure increase in habitual but not in nonhabitual coffee drinkers. 2015; 46:521–526. |