[1] | J. Ahn, M. Urist, and C. Prives, ‘The Chk2 protein kinase’, DNA Repair, vol. 3, no. 8–9, pp. 1039–1047, Aug. 2004, doi: 10.1016/j.dnarep.2004.03.033. |
[2] | N. Ansari, S. Shahrabi, A. Khosravi, R. Shirzad, and H. Rezaeean, ‘Prognostic Significance of CHEK2 Mutation in Progression of Breast Cancer’, Laboratory Medicine, vol. 50, no. 3, pp. e36–e41, Jul. 2019, doi: 10.1093/labmed/lmz009. |
[3] | M. T. M. van Jaarsveld, D. Deng, D. Ordoñez-Rueda, M. Paulsen, E. A. C. Wiemer, and Z. Zi, ‘Cell-type-specific role of CHK2 in mediating DNA damage-induced G2 cell cycle arrest’, Oncogenesis, vol. 9, no. 3. Springer Nature, 2020. doi: 10.1038/s41389-020-0219-y. |
[4] | G. Buscemi et al., ‘DNA Damage-Induced Cell Cycle Regulation and Function of Novel Chk2 Phosphoresidues’, Molecular and Cellular Biology, vol. 26, no. 21, pp. 7832–7845, Nov. 2006, doi: 10.1128/MCB.00534-06. |
[5] | A. Ciccia and S. J. Elledge, ‘The DNA Damage Response: Making It Safe to Play with Knives’, Molecular Cell, vol. 40, no. 2, pp. 179–204, Oct. 2010, doi: 10.1016/j.molcel.2010.09.019. |
[6] | J. Li et al., ‘Structural and Functional Versatility of the FHA Domain in DNA-Damage Signaling by the Tumor Suppressor Kinase Chk2’, Molecular Cell, vol. 9, no. 5, pp. 1045–1054, May 2002, doi: 10.1016/S1097-2765(02)00527-0. |
[7] | L. Zannini, D. Delia, and G. Buscemi, ‘CHK2 kinase in the DNA damage response and beyond’, Journal of Molecular Cell Biology, vol. 6, no. 6, pp. 442–457, Dec. 2014, doi: 10.1093/jmcb/mju045. |
[8] | J. Bartek and J. Lukas, ‘Chk1 and Chk2 kinases in checkpoint control and cancer’, Cancer Cell, vol. 3, no. 5, pp. 421–429, May 2003, doi: 10.1016/S1535-6108(03)00110-7. |
[9] | B. L. Bychkovsky et al., ‘Differences in Cancer Phenotypes Among Frequent CHEK2 Variants and Implications for Clinical Care—Checking CHEK2’, JAMA Oncol, vol. 8, no. 11, p. 1598, Nov. 2022, doi: 10.1001/jamaoncol.2022.4071. |
[10] | U. Teodorczyk et al., ‘The risk of gastric cancer in carriers of CHEK2 mutations’, Familial Cancer, vol. 12, no. 3, pp. 473–478, Sep. 2013, doi: 10.1007/s10689-012-9599-2. |
[11] | L. Stolarova et al., ‘CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate’, Cells, vol. 9, no. 12, Art. no. 12, Dec. 2020, doi: 10.3390/cells9122675. |
[12] | H. Janiszewska et al., ‘Constitutional mutations of the CHEK2 gene are a risk factor for MDS, but not for de novo AML’, Leukemia Research, vol. 70, pp. 74–78, Jul. 2018, doi: 10.1016/j.leukres.2018.05.013. |
[13] | J. Li et al., ‘Structural and Functional Versatility of the FHA Domain in DNA-Damage Signaling by the Tumor Suppressor Kinase Chk2’, Molecular Cell, vol. 9, no. 5, pp. 1045–1054, May 2002, doi: 10.1016/S1097-2765(02)00527-0. |
[14] | J. L. Bernstein et al., ‘The CHEK2*1100delC Allelic Variant and Risk of Breast Cancer: Screening Results from the Breast Cancer Family Registry’, Cancer Epidemiology, Biomarkers & Prevention, vol. 15, no. 2, pp. 348–352, Feb. 2006, doi: 10.1158/1055-9965.EPI-05-0557. |
[15] | Z. Fan et al., ‘Identification and analysis of CHEK2 germline mutations in Chinese BRCA1/2-negative breast cancer patients’, Breast Cancer Res Treat, vol. 169, no. 1, pp. 59–67, May 2018, doi: 10.1007/s10549-018-4673-6. |
[16] | D. J. Novak et al., ‘Identification of a novel CHEK2variant and assessment of its contribution to the risk of breast cancer in French Canadian women’, BMC Cancer, vol. 8, no. 1, p. 239, Dec. 2008, doi: 10.1186/1471-2407-8-239. |
[17] | A. Desrichard, Y. Bidet, N. Uhrhammer, and Y.-J. Bignon, ‘CHEK2 contribution to hereditary breast cancer in non-BRCAfamilies’, Breast Cancer Res, vol. 13, no. 6, p. R119, Dec. 2011, doi: 10.1186/bcr3062. |
[18] | M. R. Dufault et al., ‘Limited relevance of the CHEK2 gene in hereditary breast cancer’, Intl Journal of Cancer, vol. 110, no. 3, pp. 320–325, Jun. 2004, doi: 10.1002/ijc.20073. |
[19] | S. Mohamad et al., ‘Low Prevalence of CHEK2 Gene Mutations in Multiethnic Cohorts of Breast Cancer Patients in Malaysia’, PLoS ONE, vol. 10, no. 1, p. e0117104, Jan. 2015, doi: 10.1371/journal.pone.0117104. |
[20] | M. A. Bermisheva, Z. R. Takhirova, N. Bogdanova, and E. K. Khusnutdinova, ‘Frequency of CHEK2 gene mutations in breast cancer patients from Republic of Bashkortostan’, Mol Biol, vol. 48, no. 1, pp. 46–51, Jan. 2014, doi: 10.1134/S0026893314010026. |
[21] | K. M. Kuusisto, A. Bebel, M. Vihinen, J. Schleutker, and S.-L. Sallinen, ‘Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals’, Breast Cancer Res, vol. 13, no. 1, p. R20, Feb. 2011, doi: 10.1186/bcr2832. |
[22] | P. Vahteristo et al., ‘A CHEK2 Genetic Variant Contributing to a Substantial Fraction of Familial Breast Cancer’, The American Journal of Human Genetics, vol. 71, no. 2, pp. 432–438, Aug. 2002, doi: 10.1086/341943. |
[23] | F. Z. Francies et al., ‘BRCA1, BRCA2 and PALB2 mutations and CHEK2 c.1100delC in different South African ethnic groups diagnosed with premenopausal and/or triple negative breast cancer’, BMC Cancer, vol. 15, no. 1, p. 912, Dec. 2015, doi: 10.1186/s12885-015-1913-6. |
[24] | M. Jalilvand et al., ‘An Association Study Between Chek2 Gene Mutations and Susceptibility to Breast Cancer’, Comp Clin Pathol, vol. 26, no. 4, pp. 837–845, Jul. 2017, doi: 10.1007/s00580-017-2455-x. |
[25] | P. Brock et al., ‘CHEK2 Founder Variants and Thyroid Cancer Risk’, Thyroid®, p. thy.2023.0529, Feb. 2024, doi: 10.1089/thy.2023.0529. |
[26] | D. Paixão et al., ‘Characterization of genetic predisposition to molecular subtypes of breast cancer in Brazilian patients’, Front. Oncol., vol. 12, p. 976959, Aug. 2022, doi: 10.3389/fonc.2022.976959. |
[27] | S. Bayram, M. Topaktaş, H. Akkız, A. Bekar, and E. Akgöllü, ‘CHEK2 1100delC, IVS2+1G>A and I157T mutations are not present in colorectal cancer cases from Turkish population’, Cancer Epidemiology, vol. 36, no. 5, pp. 453–457, Oct. 2012, doi: 10.1016/j.canep.2012.03.008. |