[1] | Charles, FB, Sebastian, LR, Willis, LB, Rha, C, Sinskey, AJ. Production ofPoly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains. Appl. Environ. Microbiol. 2012; 77(9): 2847–2854. |
[2] | Chen, Q, Wang, Q, Wei, G., Liang, Q, Qi, Q. Production in Escherichia coli ofPoly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Differing Monomer Compositions from Unrelated Carbon Sources. Appl. Environ. Microbiol. 2011; 77(14): 4886–4893. |
[3] | Phithakrotchanakoon, C, Champreda, V, Aiba, S, Pootanakit, K, Tanapongpipat, S. Engineered Escherichia coli for Short-Chain-Length Medium-Chain-LengthPolyhydroxyalkanoate Copolymer Biosynthesis from Glycerol and Dodecanoate. Biosci. Biotechnol. Biochem. 2013; 77(6): 1262-1268. |
[4] | Jeon, J-M, Brigham, CJ, Kim, Y-H, Kim, H-J, Yi, D-H, Kim, H, Rha, C, Sinskey, AJ, Yang, Y-H. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 2014; 98(12): 5461–5469. |
[5] | Wang, Q, Tappel, RC, Zhu, C, Nomura, CT. Development of a New Strategy for Production of Medium-Chain-Length Polyhydroxyalkanoates by Recombinant Escherichia coli via Inexpensive Non-Fatty Acid Feedstocks. Appl. Environ. Microbiol. 2012; 78(2): 519-527. |
[6] | Agnew, DE, Stevermer, AK, Youngquist, JT, Pfleger, BF. Engineering Escherichia coli for production of C12–C14 polyhydroxyalkanoate from glucose. Metabolic Engineering. 2012; 14(6): 705-713. |
[7] | Fukui, T, Mukoyama, M, Orita, I, Nakamura, S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014; 98(17): 7559-7568. |
[8] | Tappel, RC, Pan, W, Bergey, NS, Wang, Q, Patterson, IL, Ozumba, OA, Matsumoto, K, Taguchi, S, Nomura, CT. Engineering Escherichia coli for Improved Production of Short-Chain-Length-co-Medium-Chain-Length Poly[(R)-3-hydroxyalkanoate] (SCL-co-MCL PHA) Copolymers from Renewable Nonfatty Acid Feedstocks. ACS Sustainable Chem. Eng. 2014; 2(7): 1879-1887. |
[9] | Yang, JE, Choi, YJ, Lee, SJ, Kang, K-H, Lee, H, Oh, YH, Lee, SH, Park, SJ, Lee, SY. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl.Microbiol.Biotechnol. 2014; 98(1): 95–104. |
[10] | Hokamura, A, Wakida, I, Miyahara, U, Tsuge, T, Shiratsuchi, H, Tanaka, K, Matsusaki, H. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose. J.Biosci.Bioeng. 2015; 120(3): 305-310. |
[11] | Insomphun, C, Xie, H, Mifune, J, Kawashima, Y, Orita, I, Nakamura, S, Fukui, T. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Metabolic Engineering, 2015; 27: 38-45. |
[12] | Tanaka, K, Miyawaki, K, Yamaguchi, A, Kianoush, KD, Matsusaki, H. Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl. Microbiol. Biotechnol. 2011; 92: 1161–1169. |
[13] | Hokamura, A, Wakida, I, Miyahara, Y, Tsuge, T, Shiratsuchi, H, Tanaka, K, Matsusaki, H. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose. J. Bios. Bioeng. 2015; 120: 305-310. |
[14] | Sambrook, J, Fritsch, EF, Maniatis,T. Molecular cloning: A laboratory manual, 2nd ed. 1989; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. |
[15] | Matsusaki, H, Abe, H, Doi, Y. Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by Recombinant Strains of Pseudomonas sp. 61-3. Biomacromolecules. 2000; 1 (1): 17–22. |
[16] | Kovach, M, Elzer, P, Hill, DS, Robertson, GT, Farris, MA, Roop, RM II, Peterson, KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995; 166: 175-176. |
[17] | Davidson, J, Heusterspreute, M, Chevalier, N, Ha-Thi, V, and Brunel, F. Vectors with restriction site banks. pJRD215, wide-host-range cosmid vector with multiple cloning sites, Gene, 1987; 51: 275-280. |
[18] | Matsusaki, H, Abe, H, Taguchi, K, Fukui, T, Doi, Y. Biosynthesis ofpoly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol. 2000; 53:401-409. |
[19] | Matsumoto, K, Nakae, S, Taguchi, K, Matsusaki, H, Seki, M, and Doi, Y. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) copolymer from sugars by recombinant Ralstonia eutropha harboring the phaC1Ps and the phaGPs genes of Pseudomonas sp. 61-3. Biomacromolecules. 2001; 2: 934-939. |
[20] | Tanaka, K. and Ishizaki, A. Production of poly-D-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC 17697T. J. Ferment. Bioeng.1994; 77(4): 425-427. |
[21] | Priyadarshi, S, Shukla, A, Borse, BB. Polyhydroxyalkanoates: Role of Ralstonia eutropha, International Journal of Biomedical And Advance Research. 2014; 5(2): 68-76. |
[22] | Tanaka, K, Komiyama, A, Sonomoto, K, Ishizaki, A, Hall, SJ, Stanbury, PF. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl.Microbiol.Biotechnol. 2002; 60(1-2): 160-167. |
[23] | Lee, SY. Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioprocess Engineering. 1998; 18: 397-399. |
[24] | Sandström, AG, de las Heras, AM, Portugal-Nunes D. Gorwa-Grauslund, MF. Engineering of Saccharomyces cerevisiae for the production of poly-D-3-hydroxybutyrate from xylose. AMB Express. 2015; 5:14, (DOI: 10.1186/s13568-015-0100-0). |
[25] | Le Meur, S, Zinn, M, Egli, T, Thöny-Meyer, L, Ren, Q. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440, BMC Biotechnology, 2015; 12:53 (Available at http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-12-53). |
[26] | Lopes, MSG, Rocha, RCS, Zanotto, SP, Gomez, JGC, Silva, LF. Screening of bacteria to produce polyhydroxyalkanoates from xylose. World J. Microbiol. Biotechnol. 2009; 25: 1751-1756. |
[27] | Pan,W, Perrotta, JA, Stipanovic, AJ, Nomura, CT, Nakas, JP. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J.Ind.Microbiol Biotechnol. 2012; 39: 459-469. |
[28] | Obruca, S, Benesova, P, Marsalek, L, Marova, I. Use of Lignocellulosic Materials for PHA Production. Chem. Biochem. Eng. Q. 2015; 29: 135-144. |