[1] | E. Donchin, K.M. Spencer, R. Wijesinghe, The mental prosthesis: Assessing the speed of a P300-based brain - computer interface, IEEE Trans. Rehabil. Eng., vol.8, no.2, pp. 174-179, 2000. |
[2] | R. Ortner, B.Z. Allison, G. Korisek, H. Gaggl, G. Pfurtscheller, An SSVEP BCI to control a hand orthosis for persons with tetraplegia, IEEE Trans. Neural Syst. Rehabil. Eng., vol.19, no.1, pp. 1-5, 2011. |
[3] | U. Hoffmann, J.-M. Vesin, T. Ebrahimi, An efficient P300-based brain-computer interface for disabled subjects, J. Neurosci. Methods, vol.vol.167, no.1, pp. 115-125, 2008. |
[4] | T. Yamaguchi, K. Nagala, P. Q. Truong, M. Fujio, K. Inoue, and G. Pfurtscheller, Pattern recognition of EEG signal during motor imagery by using SOM, Int. J. Innov. Comp. Inf. Control, vol.4, no.10, pp.2617-2630, 2008. |
[5] | E. Niedermeyer, F.L. Da Silva, Electroencephalography, 5th Ed. Lippincott Williams & Wilkins, 2005. |
[6] | Z. F. Zi, T. Sugi, S. Goto, X. Y. Wang, and M. Nakamura, A real-time data classification system for accurate analysis of neuro-biological signals, Int. J. Innov. Comp. Inf. Control, vol.7, no.1, pp.73-83, 2011. |
[7] | E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, Cambridge, Massachusetts, 2007. |
[8] | A. Turnip and K.-S. Hong, Classifying mental activities from EEG-P300 signals using adaptive neural network, Int. J. Innov. Comp. Inf. Control, vol. 8, no. 9, pp. 6429-6443, 2012. |
[9] | J.-S. Lin and W.-C. Yang, Wireless brain-computer interface for electric wheelchairs with EEG and eye-blinking signls, Int. J. Innov. Comp. Inf. Control, vol.8, no. 9, pp 6011-6024, 2012. |
[10] | C. R. Hema, M. P. Paulraj, R. Nagarajan, S. Taacob, and A. H. Adom, Brain machine interface: a comparison between fuzzy and neural classifiers, Int. J. Innov. Comp. Inf. Control, vol.5, no.7, pp.1819-1827, 2009. |
[11] | C. L. Zhao, C. X. Zheng, M. Zhao, J. P. Liu, and Y. L. Tu, Automatic classification of driving mental fatigue with eeg by wavelet packet energy and KPCA-SVM, Int. J. Innov. Comp. Inf. Control, vol.7, no.3, pp.1157-1168, 2011. |
[12] | Z. S. Hua, X. M. Zhang, and X. Y. Xu, Asymmetric support vector machine for the classification problem with asymmetric cost of misclassification, Int. J. Innov. Comp. Inf. Control, vol.6, no.12, pp.5597-5608, 2010. |
[13] | A. Shibata, M. Konishi, Y. Abe, R. Hasegawa, M. Watanabe, and H. Kamijo, Neuro based classification of facility sounds with background noises, Int. J. Innov. Comp. Inf. Control, vol.6, no.7, pp.2861-2872, 2010. |
[14] | K.-C. Hung, Y.-H. Kuo, and M.-F. Horng, Emotion recognition by a novel triangular facial feature extraction method, Int. J. Innov. Comp. Inf. Control, vol.8, no.11, pp. 7729-7746, 2012. |
[15] | S.T. Ahi, H. Kambara, Y. Koike, A dictionary-driven P300 speller with a modified interface, IEEE Trans. Neural Syst. Rehabil. Eng., vol.19, no.1, pp. 6-14, 2011. |
[16] | E.M. Mugler, C.A. Ruf, S. Halder, M. Bensch, A. Kubler, Design and implementation of a P300-based brain-computer interface for controlling an internet browser, IEEE Trans. Neural Syst. Rehabil. Eng., vol.18, no.6, pp. 599-609, 2010. |
[17] | D. Huang, P. Lin, D.-Y. Fei, X. Chen, O. Bai, Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control, J. Neural Eng., vol.6, no.4, pp. 046005, 2009. |
[18] | O. Aydemir and T. Kayikcioglu, Comparing common machine learning classifiers in low-dimensional feature vectors for brain computer interface application, Int. J. Innov. Comp. Inf. Control, vol.9, no. 3, pp. 1145-1157, 2013. |
[19] | V. Abootalebi, M.H. Moradi, M.A. Khalilzadeh, A comparison of methods for ERP assessment in a P300-based GKT, Int. J. Psychophysiol, vol.62, no. 2, pp. 309-320, 2006. |
[20] | R.M. Chapman, H.R. Bragdon, Evoked responses to numerical and nonnumerical visual stimuli while problem solving, Nature, vol.203, no.12, pp. 1155-1157, 1964. |
[21] | S. Sutton, M. Braren, E.R. John, J. Zubin, Evoked potential correlates of stimulus uncertainty, Science, vol.150, no. 700, pp. 1187-1188, 1965. |
[22] | M. Onofrj, D. Melchionda, A. Thomas, T. Fulgente, Reappearance of event-related P3 potential in locked-in syndrome, Cognitive Brain Research, vol.4, no.2, pp. 95-97, 1996. |
[23] | L.A. Farwell, E. Donchin, Talking off the top of the head: Toward a mental prosthesis utilizing event-related brain potentials, Electroenceph. Clin. Neurophysiol., vol.70, no.6, pp. 510-523, 1988. |
[24] | A.D. Poularikas, Z.M. Ramadan, Adaptive Filtering Primer with Matlab, CRC Press Taylor & Francis Group, 2006. |
[25] | S. Salehi and H. M. Nasab, New image interpolation algorithms based on dual-three complex wavelet transform and multilayer feedforward neural networks, Int. J. Innov. Comp. Inf. Control, vol.8, no.10(A), pp. 6885-6902, 2012. |
[26] | C.-H. Liang and P.-C. Tung, The active vibration control of a centrifugal pendulum vibration absorber using a back-propagation neural network, Int. J. Innov. Comp. Inf. Control, vol.9, no. 4, pp. 1573-1592, 2013. |
[27] | Y.-Z. Chang, K.-T. Hung, H.-Y. Shin, and Z.-R. Tsai, Surrogate neural network and multi-objective direct algorithm for the optimization of a swiss-roll type recuperator, Int. J. Innov. Comp. Inf. Control, vol.8, no.12, pp. 8199-8214, 2012. |
[28] | R. Hedjar, Adaptive neural network model predictive control, Int. J. Innov. Comp. Inf. Control, vol.9, no.3, pp. 1245-1257, 2013. |
[29] | I-T. Chen, J.-T. Tsai, C.-F. Wen, and W.-H. Ho, Artificial neural network with hybrid taguchi-genetic algorithm for nonlinear MIMO model of machining processes, Int. J. Innov. Comp. Inf. Control, vol.9, no.4, pp. 1455-1475, 2013. |
[30] | T.-L. Chien, Feedforward neural network and feedback linearization control design of bilsat-1 satellite system, Int. J. Innov. Comp. Inf. Control, vol. 8, no.10(A), pp. 6921-6943, 2012. |
[31] | P. He, G. Wilson, C. Russell, Removal of ocular artifacts from electro-encephalogram by adaptive filtering, Med. Biol. Eng. Comput., vol.42, no.3, pp. 407-412, 2004. |
[32] | R.R. Gharieb, A. Cichocki, Segmentation and tracking of the electro-encephalogram signal using an adaptive recursive bandpass filter, Med. Biol. Eng. Comput., vol.39, no.2, pp. 237-248, 2001. |
[33] | X. Wan, K. Iwata, J. Riera, M. Kitamura, R. Kawashima, Artifact reduction for simultaneous EEG/fMRI recording: adaptive FIR reduction of imaging artifacts, Clin. Neurophysiol., vol.117, no.3, pp. 681-92, 2006. |
[34] | G. Pfurtscheller, C. Neuper, A. Schlogl, K. Lugger, Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters, IEEE Trans. Rehabil. Eng., vol.6, no.3, pp. 316-325, 1998. |
[35] | S. Roberts, W. Penny, Real-time brain computer interfacing: A preliminary study using bayesian learning, Med. Biol. Eng. Comput., vol.38, no.1, pp. 56-61, 2000. |
[36] | J.G. Proakis, Digital Communications, McGraw-Hill, New York, NY, Third Edition, 1995. |
[37] | A. Zaknich, Principles of Adaptive Filters and Self-learning Systems, Leipzig, Germany, Springer-Verlag London Limited, 2005. |
[38] | C.E. Shannon, W. Weaver, A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379-423 and 623-656. |
[39] | D. Graupe, Princiles of Artificial Neural Networks, 2nd Ed. World Scientific Publishing Co. Pte. Ltd. 6 (2007). |
[40] | Y. H. Hu and J.-N. Hwang, Handbook of Neural network signal processing, CRC Press, Washington, D.C., 2002. |