International Journal of Agriculture and Forestry
p-ISSN: 2165-882X e-ISSN: 2165-8846
2024; 14(2): 25-39
doi:10.5923/j.ijaf.20241402.01
Received: Jun. 16, 2024; Accepted: Jul. 3, 2024; Published: Jul. 6, 2024

Deise Amaral de Deus1, André Scarambone Zaú2, Graciela Ines Bolzon de Muniz3, Silvana Nisgoski3, Heber dos Santos Abreu4, Dráuzio Correia Gama5
1Institute of Agricultural Sciences, Federal Rural University of the Amazon, Belém-PA, Brazil
2Department of Environmental Sciences, Federal University of the State of Rio de Janeiro-RJ, Brazil
3Department of Forestry Engineering and Technology, Federal University of Paraná, Curitiba-PR, Brazil
4Madeira Chemistry Laboratory, Federal Rural University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
5Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas-BA, Brazil
Correspondence to: Dráuzio Correia Gama, Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas-BA, Brazil.
| Email: | ![]() |
Copyright © 2024 The Author(s). Published by Scientific & Academic Publishing.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

The fundamental chemical components of wood (cellulose, hemicellulose and lignin) are anatomically inherent and vary along the trunks of each individual tree. The aim of this study was to analyse the formation and concentration gradient of lignin and cellulose intensity signals between knotless wood, the knot-to-wood transition zone and knots in the species Pinus elliottii var. elliottii Engelm. Wood samples in knotted and knotless regions of Pinus elliottii var. elliotti trees from a plant shop in Agudos-SP, were analysed in the laboratory of the Federal University of Rio de Janeiro. Based on the degradative methods of Klason Lignin, 13C spectroscopy and nuclear magnetic resonance and Fourier transforminfrared and histochemical tests in histological sections, differentiated patterns in the development dynamics between the anatomical elements of knotless wood and knotted wood were verified. The structure of lignin in knotted and knotless wood was different, despite the proximity of these regions to one another. Crystalline cellulose signals were more intense in the middle knot and top knot regions. It is possible to conjecture that these characteristics interfere with wood resistance in these regions along the trunk.
Keywords: Trunk Regions, Anatomical Elements, Spectroscopic Methods, Resistance
Cite this paper: Deise Amaral de Deus, André Scarambone Zaú, Graciela Ines Bolzon de Muniz, Silvana Nisgoski, Heber dos Santos Abreu, Dráuzio Correia Gama, Presence of Lignin and Cellulose Intensity Signals in Knotted and Knotless Wood of Pinus elliottii var. elliottii Engelm, International Journal of Agriculture and Forestry, Vol. 14 No. 2, 2024, pp. 25-39. doi: 10.5923/j.ijaf.20241402.01.
![]() | (1) |
|
![]() | Figure 1. Percentage of Klason lignin from Pinus elliottiivar. elliottii, considering the conditions of “knotless wood”, “knot-to-wood transition” and “knot” and the position on the trunk (bottom, middle and top). Black lines represent the averages in each situation |
|
![]() | Figure 2. (a): 13C CP/MAS NMRspectra of the wood without extractives, from the knot at the bottom region (25% of bole length); (b) middle region (50% of bole length) and (c): the top region (100% commercial height) of Pinus elliottii var. elliottii |
![]() | Figure 3. (a): 13C NMR spectra from knotlesswood at the bottom (25% of bole height); (b) middle region (50% of bole height) and (c): top region (100% of bole height) of Pinus elliottii, var. elliottii Engelm |
|
![]() | Figure 4. Percentage of cellulose crystallinity in knotted wood region and knotless wood, along the trunk of Pinus elliottii, var. elliottii Engelm |
![]() | Figure 5. 13C NMR CP/MAS spectra of extractive-free wood, integrated in the region between (80-97 ppm) from the bottom region (25% of bole height) of the knot (a) and normal (b), from the middle region of the trunk (50% commercial height) for the knot (c) and normal (d) and from the top region (100% commercial height) of the knot (e) and normal (f) in Pinus elliottii, var. elliottii Engelm |
|
![]() | Figure 6. (a): Fourier transform infrared spectrum in the bottom region of extractive-free knotted wood; (b) in the middle region of extractive-free knotted wood; (c): in the top region of extractive-free knotted wood; (d): in the bottom region of extractive-free knotless wood; (e): in the middle region of extractive-free knotless wood and (f) in the top region of extractive-free knotless wood of Pinus elliottii var. elliottii Engelm |
![]() | Figure 7. Histochemical tests applied to a cross-section of knotless wood from Pinus elliottii var. elliottii Engelm (A, B): Wiesener test showing the presence of more aldehyde lignin (darker colour) at the edges at the start of the lignification process. (C, D): Maüle test showing the presence of type G lignin. (E, F): Lignin autofluorescence showing the start of the lignification process at the edges (SETAS) of the cells. Bars (A, C, D, E) = 20μm; (B, F) = 100 μm |
![]() | Figure 8. Histochemical tests applied to the cross-section of knotted Pinus elliottii var. elliottii Engelm wood (A, B): Wiesener test showing less aldehyde lignin (lighter colour compared to the colour of knotless wood). (C, D): Maüle test (E, F): Lignin autofluorescence. Bars: (A, C, E) = 20μm; (B, D and F) = 100 |
| [1] | Oliveira, J. T. S. (1997). Caracterização da madeira de eucalipto para construção civil. 429 p. |
| [2] | Silva, J. C. (2002). Caracterização da madeira de Eucalyptus grandis Hill ex. Maiden, de diferentes idades, visando a sua utilização na indústria moveleira, 160 p. |
| [3] | Gatto D. A., Calegari, L., Santini, E. J., Stangerlin, D.M., Trevisan, R. and Oliveira, R. S. (2008). Propriedades da madeira de Pinus elliottii Engelm submetida a diferentes temperaturas de secagem. Revista Cerne, 14(3): 220-226. |
| [4] | Britez, C. A. and Nogueira, V. (2006). Inter-relação entre as propriedades e a microestrutura das madeiras. 25 p. |
| [5] | Abreu, H., Maêda, J., Latorraca, J., Pereira, R., Monteiro, M.B., Abreu, F. and Carmo, J. (2004). Proposta de Modificação da Biossíntese da Lignina como Estratégia para Correção de Defeitos em Madeiras. Silva Lusitana, 11: 217 - 225. |
| [6] | Deus, D. A. D., Zaú, A. S., Muniz, G. I. B. D., Nisgoski, S., Abreu, H. D. S. and Gama, D. C. (2022). Lignina: uma importante tecnologia química da madeira. E-Acadêmica, 3(3): e7233391-e7233391. |
| [7] | Patten, A. N., Jourdes, M., Brown, E. E., Laborie, M-P., Davin, L. B. (2007). Lewis, N. G. Reaction tissue formation and stem tensile modulus properties in wild-type and p-coumarate-3-hydroxylase down regulated lines of alfalfa, Medicago sativa (Fabaceae). American Journal of Botany, 94(6): 912-925. |
| [8] | [8] FENGEL, D.; WEGENER, G. Wood: chemistry, ultrastructure, reactions. Verlag Kessel. Berlin. 613 p. 2003. |
| [9] | Klock, U., Muniz, G. I. B., Hernandez, J. A. and Andrade, A.S. (2005). Apostila de química da madeira. |
| [10] | Wilkie, J. S. (1961). Carl Nägeli and the fine structure of living matter. Nature, 190: 1145-1150. |
| [11] | Nishiyama, Y., Langan, P. and Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31): 9074-9082. |
| [12] | Oliveira, R. M. (2009). Utilização de técnicas de caracterização de superfícies de madeiras tratadas termicamente, 123p. |
| [13] | Mokfienski, A. (2004). Importância relativa da densidade básica e da constituição química de madeira de Eucalyptus spp. no rendimento, branqueabilidade da qualidade da polpa Kraft, 136 p. |
| [14] | Stam, A. J. (1964). Wood and cellulose science. New York. Ronald Press. |
| [15] | Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. B. and Stahl, K. (2005). On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 12(6): 563-576. |
| [16] | Dufresne, A. and Belgacem, M. N. (2013). Cellulose-reinforced composites: from micro-to nanoscale. Polímeros, 23(3): 277-286. |
| [17] | Klinke, H. B., Lilholt, H., Toftegaard, H., Andersen, T. L., Schmidt, A. S. and Thomsen, A. B. (2000). Wood and plant fibre reinforced polypropylene composites. In: Proceedings, Biomass for energy and industry: 1st World conference and technology exhibition, Sevilla, 2: 1082-1085. |
| [18] | Marvila, M. T., Rocha, H. A., Azevedo, A. R. G. D., Colorado, H. A., Zapata, J. F. and Vieira, C. M. F. (2021). Use of natural vegetable fibers in cementitious composites: Concepts and applications. Innovative Infrastructure Solutions, 6: 1-24. |
| [19] | Lahr, F. A., Nogueira, M. C., Araujo, V. A. D., Vasconcelos, J. S. and Christoforo, A. L. (2018). Wood utilization of Eucalyptus grandis in structural elements: densities and mechanical properties. Engenharia Agrícola, 38: 642-647. |
| [20] | Browning, B. L. (1967). Methods of wood chemistry – Interscience Publishers – New York, 2: 800 p. |
| [21] | Abreu, H. S., Carvalho, A. M., Monteiro, M. B. O., Pereira, R. P. W., Silva, H. R., Souza, K. C. A., Amparado, K. F. and Chalita, D. B. (2006). Métodos de análise em química da madeira. Floresta e Ambiente, Série técnica: 01-20. |
| [22] | Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. and Johnson; D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3: 1-10. |
| [23] | Morais, S. A. L., Nascimento, E. A. and Melo, D. C. (2005). Análise da madeira de Pinus oocarpa parte I – estudo dos constituintes macromoleculares e extrativos voláteis. Árvore, 29(3): 46-470. |
| [24] | Vazquez-Cooz, I. and Meyer, R.W. (2002). A differential staining method to identify lignified and unlignified tissues. Biotechnic and Histochemistry, 77(5-6): 277-282. |
| [25] | Lin, S. Y. and Dence, C. W. (1992). Methods in lignin chemistry. Berlim: Spring-Verlag, 568 p. |
| [26] | Hori, R. and Sugiyama, J. (2003). A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrate Polymers, 52(4): 449-453. |
| [27] | Sansígolo, C. A. and Barreiros, R. M. (1998). Qualidade da madeira de Pinus caribaea var. hondurensis para produção de celulose kraft. In: Congresso Anual de Celulose e Papel Da ABTCP, São Paulo. Anais..., 31: 417- 429. |
| [28] | Carvalho, W., Canilha, L., Ferraz, A. and Milagres, A. M. F. (2009). Uma visão sobre a estrutura, composição e biodegradação da madeira. Química Nova, 32(8): 2191-2195. |
| [29] | Balloni, C. J. V. (2009). Caracterização física e química da madeira de Pinus elliottii. 42 p. |
| [30] | Willför, S., Nisula, L., Hemming, J., Reunanen, M. and Holmbom, B. R. (2003c). Bioactive phenolic substances in industrially important tree species. Part 1: Knots and stem wood of different spruce species. Holzforschung, 58(4): 335-344. |
| [31] | Hillis, W. E. and Inoue, T. (1968). The formation of polyphenols in trees-IV: The polyphenols formed in Pinus radiate after Sirex attack. Phytochemistry, 7(1): 13-22. |
| [32] | Anderegg, R. J. and Rowe, J. W. (1974). Lignans, the major component of resin from Araucaria angustifolia knots. Holzforschung, 28(5): 171-175. |
| [33] | Willför, S., Hemming, J., Reunanen, M., Eckerman, C. and Holmbom, B. R. (2003a). Phenolic and lipophilic extractives in Scots pine knots and stem wood. Holzforschung, 57(1): 27-36. |
| [34] | Willför, S., Hemming, J., Reunanen, M. and Holmbom, B. (2003b). Phenolic and lipophilic extractives in Scots pine knots and stem wood. Holzforschung, 57(4): 359-372. |
| [35] | Phelan, M., Aherne, S. A., Wong, A. and O’brien, N. M. (2009). Bioactive properties of wood knot extracts on cultured human cells. Journal of Medicinal Food, 12(6): 1245-1251. |
| [36] | Gotelli, N. J. and Ellison, A. M. (2011). Princípios de estatística em ecologia. Porto Alegre: Artmed. 547p. |
| [37] | Rodrigues, C. K. Um breve estudo sobre a abordagem do teorema central do limite nos livros-texto. In: XIII Conferência Interamericana de Educação Matemática, 2011, Recife. Anais... Recife, 2011. |
| [38] | Holmbom, B. R., Eckerman, C., Eklund, P., Hemming, J., Nisula, L., Reunanen, M., Sjöholm, R., Sundberg, A., Sundberg, K. and Willför, S. (2003). Knots in trees – A new rich source of lignans. Phytochemistry Reviews, 2: 331-340. |
| [39] | Souza, N. D., Abreu, H. S., Elias, T. F., Latorraca, J. F. L. and Maeda, J. M. (2011). Dados de carbono molecular do extrato ciclo-hexano da madeira de Eucalyptus urophylla S. T. Blacke por RMN de 13C. Floresta e Ambiente, 18(2): 186-197. |
| [40] | Landucci, L. L., Ralph, S. A. and Ammel, K. E. (1998). 13C NMR characterization of guaiacyl, guaiacyl/syringyl and syringyl dehydrogenation polymers. Holzforschung, 52(2): 160-170. |
| [41] | Froass, P. M., Ragauskas, A. J. and Jiang, J.-Er. (1996). Chemical structure of residual lignin from kraft pulp. Journal of Wood Chemistry and Technology, 16(4): 347-365. |
| [42] | Lago, J. H. G. and Roque, N. F. (2009). Estudo fitoquímico da madeira de Guarea macrophylla (meliaceae). Química Nova, 32(9): 2351-2354. |
| [43] | Obst, J. R. and Landucci, L. L. (1986). Quantitative 13C NMR of lignins – methoxyl: aryl ratio. Holzforschung, 40(suppl.): 87-92. |
| [44] | Donaldson, L. A. and Knox, J. P. (2012). Localization of cell wall polysaccharides in normal and compression wood of Radiata Pine: relationships with lignification and microfibril orientation. Plant Physiology, 158(2): 642-653. |
| [45] | Aloni, R. (2013). The role of hormones in controlling vascular differentiation. Plant Cell Monographs, 20: 99-139. |
| [46] | Aloni, R. (1987). Differentiation of vascular tissues. Plant Physiology, 38: 179-204. |
| [47] | Aloni R. and Peterson C. A. (1997). Auxin promotes dormancy callose removal from the phloem of Magnolia kobus and callose accumulation and early wood vessel differentiation in Quercus robur. Journal of Plant Research, 110(1): 37-44. |
| [48] | Evert, R. F. Anatomia das plantas de Esau: meristemas, células e tecidos do corpo da planta: sua estrutura, função e desenvolvimento. Blucher, 726 p. 2013. |
| [49] | Aloni, R. and Zimmermann, M. H. (1983). The control of vessel size and density along the plant axis - A new hypothesis. Differentiation, 24(1-3): 203-208. |
| [50] | Pomar, F., Merino, F. and Ros Barceló, A. (2002). O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma, 220: 17-28. |
| [51] | Barceló, A. R., Pomar, F. and Pedreño, M. A. (2000). Competitive inhibitor-dissected histochemistry of the peroxidase responsible for syringyl lignin biosynthesis in Z. elegans xylem. Australian Journal of Plant Physiology, 27: 1101-1107. |
| [52] | Fukushima K. and Terashima N. (1991). Heterogeneity in formation of lignin. Wood Science and Technology, 25(5): 371-381. |
| [53] | Donaldson, L. A. (2001). Lignification and lignin topochemistry — an ultrastructural view. Phytochemistry, 57(6): 859–873. |
| [54] | Donaldson, L. A (1994). Mechanical constraints on lignin deposition during lignifications. Wood Science and Technology, 28(2): 111-118. |
| [55] | Whetten, R. and Sederoff, R. (1995). Lignin Biosynthesis. Plant Cell, 7(7): 1001-1013. |
| [56] | Grabber, J. H. (2005). How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Science Society of America, 45(3): 820-831. |
| [57] | Silva, J. C., Matos, J. L. M., Oliveira, J. T. and Evangelista, W. V. (2005). Influência da idade e da posição ao longo do tronco na composição química da madeira de Eucalyptus grandis Hill ex. Maiden. Revista Árvore, 29(3): 455-460. |
| [58] | Ballarin, A. W. and Palma, H. A. L. (2003). Propriedades de resistência e rigidez da madeira juvenil e adulta de Pinus taeda L. Árvore, 27(3): 371-380. |
| [59] | Zimmermann, M. H.; D. Potter. (1982). Vessel-length distribuition in branches, stem, and roots of Acer rubrum L. IAWA, 3(2); 103-109. |
| [60] | Muñiz, G. I. B. (1993). Caracterização e Desenvolvimento de Modelos para Estimar as Propriedades e o Comportamento na Secagem da Madeira de Pinus elliottii Engelm. e Pinus taeda L., 252p. |
| [61] | Shimoyama, V. R. S. (2005). Estimativas de propriedades da madeira de Pinus taeda através do método não destrutivo emissão de ondas de tensão, visando a geração de produtos de alto valor agregado, 151 p. |
| [62] | Emonet, A.; Hay, A. (2022). Development and diversity of lignin patterns. Plant Physiology, 190(1), 31-43. |
| [63] | Galston, A. W.; Davies, P. J. (1972). Mecanismo de controle no desenvolvimento vegetal. Edgard Blucher: São Paulo, 171p. |
| [64] | Taiz, L.; Zeiger, E.; Moller, I. M.; Murphy, A. (2021). Fundamentos de fisiologia vegetal. Artmed: Porto Alegre, 558p. |