[1] | Abdel Latef A. A. 2010. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Research Communications. 38:43-55. |
[2] | Abu-Sharar, T.M. and Zughul, M.B. 1990. Multcomp: A Computer program for preparation and chemical speciation of multi-component saline solutions. Plant and Soil. 122: 201-206. |
[3] | Achatz, B., von Rüden, S., Andrade, D., Neumann, E., Pons-Kühnemann, J., Franken, P., et al. 2010. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating early plant development. Plant Soil. 333:59–70. |
[4] | Al-Absi, K. M.; Al-Nasir, F. M. and Mahadeen, A. Y. 2009. Mineral content of three olive cultivars irrigated with treated industrial wastewater. Agricultural Water Management. 96: 616-626. |
[5] | Alfocea, F. B., Estañ, M. T., Caro, M. and Bolarín, M. C. 1993. Response of tomato cultivars to salinity. Plant and Soil. 150: 203-2011. |
[6] | Al-Karaki G. N. 2000. Growth, water use efficiency, and sodium and potassium acquisition by tomato cultivars grown under salt stress. Journal of Plant Nutrition. 23: 1-8. |
[7] | Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner. 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist. 180:501-10. |
[8] | Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39:205-207. |
[9] | Bolarín, M.C. and Fernández, F.G. 1991. Salinity tolerance in four wild tomato species using vegetative yield-salinity response curves. Journal of American Society for Horticultural Science. 116(2):286-290. |
[10] | Bütehorn, B., Rhody, D. and Franken, P. 2000. Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1alpha of the root endophyte Piriformospora indica . Plant Biology. 2: 687-692 |
[11] | Cuartero, J., Bolarín, M. C., Asins, M. J. and Moreno, V. 2005. Increasing salt tolerance in the tomato. Journal of Experimental Botany. 57 (5): 1045-1058. |
[12] | Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weis, M., Waller, F. and Kogel K.H. 2006. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. The Proceedings of the National Academy of Sciences of the United States of America. 103:18450–18457. |
[13] | Fakhro, A., Andrade-Linares, D. R., von Bargen, S., Bandte, M., Büttner, C., Grosch, R., Schwarz, D. and Franken, P. 2010. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 20: 191-200. |
[14] | Greenway, H. and Munns, R. 1980. Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology. 31: 149-190. |
[15] | Niu, G. and Cabrera, R. I. 2010. Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience. 45: 1605-1609. |
[16] | Oelmuller, R., Sherameti, I., Tripathi, S. and Varma, A. 2009. Piriformospora indica, acultivable root endophyte with multiple biotechnological applications. Symbiosis. 49: 1–17. |
[17] | Rodriguez R. J., Henson, J., Van Volkenburgh, E., Hoy, M, Wright, L. and Beckwith, F. 2008. Stress tolerance in plants via habitat‑adapted symbiosis. Multidisciplinary Journal of Microbial Ecology. 2:404-416. |
[18] | Schäfer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kühnemann, J., Sonnewald, S., Sonnewald, U., Kogel, K.H. 2009. Manipulation of plant innate Plant Soil immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant Journal 59:461–474. |
[19] | Serfling, A., Wirsel, S.G.R., Lind, V. and Deising, H.B. 2007. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology. 97:523–531. |
[20] | Shannon, M. C., Dalton, F. N. and El-Sayed, S. F. 1993. Physiological Response of Corps to Sea Water: Minimiizing Constraints that Limit Yield. In: Leith, H. and Al- Masoom, A. (ed.) Towards the Rational Use of High Salinity Tolerant Plants. Vol. 2. Kluwer Academic Publishers. Dordrecht, pp: 3-12. |
[21] | Sherameti I., Tripathi S., Varma A., Oelmüller R. 2008. The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant Microbe Interactions. 21: 799–807. |
[22] | Singh, L. P., Gill, S. S. and Tuteja, N. 2011. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling and Behavior. 6: 175-191. |
[23] | Sirrenberg, A., Goebel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I., Pawlowski, K. 2007. Piriformospora indica affects plant growth by auxin production. Physiological Plantarum. 131:581–589. |
[24] | Snedecor, G. W. and Chochran, W. G. 1980. Statistical Methods. 7th ed. Iowa State Univ. Press. USA. |
[25] | Stein, E., Molitor, A., Kogel, K.H. and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiology. 49:1747–1751. |
[26] | Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmüller, R. and Lou, B. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology. 167:1009-1017. |
[27] | Truesdell, A. H. and Jones, P. F. 1974. WATEQ: A computer program for calculating chemical equilibiria of natural waters. Journal of Research of the U. S. Geological Survey. 2: 233-248. |
[28] | Tsugan e K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A Recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11: 1195–1206. |
[29] | Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. The Proceedings of the National Academy of Sciences of the United States of America. 102:13386–13391. |
[30] | Varma, A., Verma, S., Sudha, X., Sahay, N., Bu¨ tehorn, B. and Franken, P. 1999. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology. 65: 2741–2744. |
[31] | Zarea, M.J., Hajinia, S., Karimi, N., Mohammadi Goltapeh, E., Rejali, F. and Varma, A. 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry. 45: 139–146. |