[1] | A.L. Anaya, G. R. Waller, O. Owuor, J. Friedman, C. H. Chou, T. Suzuki, J. F. Arroyo-Estrada, and R. Cruz-Ortega. 2002. The role of caffeine in the production decline due to autotoxicity in coffee and tea plantations. In: Reigosa, M., Pedrol, N. (Eds.), Allelopathy - from Molecules to Ecosystems. Science Publishers Inc., Enfield USA, Plymouth UK, pp71-9. |
[2] | A.L. Anaya, R. Cruz-Ortega, and G. R. Waller. Metabolism and ecology of purine alkaloids. Front Biosci. 2006, 11: 2354-2370. |
[3] | T. Suzuki and G.R. Waller. Allelopathy due to purine alkaloids in tea seeds during germination. Plant Soil 1987, 98:131-136. |
[4] | H. H. Ashihara, Sano, and A. Crozier. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 2008, 69: 841-856. |
[5] | V. Lakshim and N. Das. Biodegradation of caffeine by Trichosporon asahii isolated from caffeine contaminated soil. Int. J. Engin. Sci. Technol. 3: 7988-7997. |
[6] | S. K. Gokulakrishnan, Chandraraj, N. Sathyanarayana, and N. Gummadi. Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb. Technol.2005, 37:225-232. |
[7] | A.G. Trovo, T.F.S. Silva, O. Gomes Jr., A.E.H. Machado, W. BorgesNeto, P.S. Muller Jr. and D. Daniel. Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design. Chemosphere 2013, 90: 170-175. |
[8] | R. T. Caspi, Altman, J. M. Dale, K. Dreher, C. A. Fulcher, F. Gilham, P. Kaipa et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2010, 38: D473-D479. |
[9] | S. N. Gummadi, S. S. Dash, and S. Devarai, S. 2009. Optimization of production of caffeine demethylase by Pseudomonas sp. in a bioreactor. J. Industr. Microbiol. Biotechnol. 2009, 36:713-720. |
[10] | R.M. Summers, T.M. Louie, C.L. Yu, and M. Subramanian. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 2011, 157: 583-592. |
[11] | R. M. Summers, T.M. Louie, C. L. Yu, L. Gakhar, K. C Louie and M. Subramanian. Novel highly specific N - demethylations enable bacteria to live on caffeine and selected purine alkaloids. J. Bacteriol. 2012, 194: 2041-2049. |
[12] | P. Mazzafera. Catabolism of caffeine in plant and microorganisms. Front. Biosci. 2004, 9:1348-1359. |
[13] | S. A. Roussos, M. de los Angeles, M. del Refugio Trejo - Hernandez, I. Gaime Perraud, E. Favala, M. Ramakrishna, M. Raimbault, and G. Viniegra-Gonzales.1995. Biotechnological management of coffee pulp-isolation, screening,characterization, selection of caffeine-degrading fungi and natural microflora in coffee pulp and husk. Appl. Microbiol. Biotechnol. 1995, 42:756-762. |
[14] | F. E. Vega, A. Simpkins, M. C. Aime, F. Posada, S. W. Peterson, S. A. Rehner, F. Infante, A. Castillo, A. E. Arnold. 2010. Fungal endophyte diversity in coffee plants from Columbia, Hawaií, Mexico, and Puerto Rico. Fungal Ecol. 2010, 3, 122-138. |
[15] | A. H. Pacheco Bustos, J. Pohlan, and M. Schulz. Allelopathic effects of aromatic species intercropped with coffee: investigations of their growth stimulation capacity and potential of caffeine uptake in Puebla, Mexico. Allelopathy J. 2008a, l 21, 39-56. |
[16] | A. H. Pacheco Bustos, J. Pohlan, and M. Schulz. Interaction between coffee (Coffea arabica L) and intercropped herbs under field conditions in the Sierra Norte of Puebla, Mexico. J. Agricult. Rural Develop. Tropis and Subtropis 2008b, 109:85 A.M -93. |
[17] | T. J. White, T. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Shisky, J.J., White, T.J. (Eds.) PCR protocols: a guide to methods and applications, Academic press, San Diego, pp 315-322. |
[18] | Z. F. Yu, M. Qiao, Y. Zhang, and K. Q. Zhang. Two new species of Trichoderma from Yunnan, China. Antonie van Leeuwenhoek 2007, 92:101-108. |
[19] | M. N. Widjojoatmodjo, A. D. C. Fluit, and J. Verhoef, J. Rapid identification of bacteria by PCR-single strand conformation polymorphism. J. Clin. Microbiol. 1994, 32:3002-3007. |
[20] | K. E. Nelson, C. Weinel, I. T. Paulson, R. J. Dodson, H. Hilbert et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Envir. Microbiol. 2002, 4:799-808. |
[21] | S. S. Dash, N. S. Sailaja, and S. N. Gummadi. Chemotaxis of Pseudomonas sp. To caffeine and related methylxanthines. J. Basic Microbiol. 2008, 48:130-134. |
[22] | C. L. Yu, T. M. Louie, R. Summers, Y. Kale, S. Gopishetty, and M. Subramanian. Two distinct pathways for metabolism of theophylline and caffeine are co-expressed in Pseudomonas putida CBB5. J. Bacteriol. 2009, 191: 4624-4632. |
[23] | I., Samolski, A. de Luis, J. A. Vizcaino, E. Monte, and M. B. Suarez. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol. 2009, 9: 217. |
[24] | G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. Trichoderma species - opportunistic, avirulent plant symbionts. Nature Rev. Microbiol. 2004, 2: 43-56. |
[25] | P. Hohmann, E.E. Jones, R.A. Hill, and A. Stewart. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol. 2011, 115: 759–767. |
[26] | P. Hohmann, E. E. Jones, R. A. Hill, and A. Stewart. Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata. FEMS Microbiol Ecol.2012, 80: 709–721. |
[27] | A. Schuster, and M. Schmoll, M. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 2010, 87: 787-799. |
[28] | H. Bae, R.C. Sicher, M.S. Kim, S.H. Kim, M. D. Strem, R. L. Melnick, and B. A. Bailey. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 2009, 60: 3295-3295. |
[29] | H. C. Evans, K. A. Holmes, and S.E. Thomas. Mycobiota of an indigenous Theobroma species (Sterculiaceae) in Ecuador: assessing its potential for biological control of cocoa diseases. Mycol. Progr. 2003, 2:149-160. |
[30] | Schulz M., P. Kussmann , M. Knop, B. Kriegs, F. Gresens, T. Eichert, A. Ulbrich, F. Marx, H. Fabricius , H. Goldbach, G. Noga. 2007. Allelopathic monoterpenes interfere with Arabidopsis thaliana cuticular waxes and enhance transpiration. Plant Signal. Behav. 24: 231-239. |
[31] | J. I. Vandermeer, J., I. Perfecto, and S. Philpott. Ecological complexity and pest control in organic coffee production; uncovering an autonomous ecosystem service. Bioscience 2010, 60: 527-537. |
[32] | C. Potvin, C. T. Owen, S. Melzi, and P. Beaucage. Biodiversity and modernization in four coffee-producing villages of Mexico. Ecol. Society 2005, 10, 18. |