[1] | Jackson, R.; Caldwell, M. Geostatistical patterns of soil heterogeneity around individual perennial plants. J. Ecol. 1993, 81: 683–692. |
[2] | Caldwell, M.; Dudley, L.; Lilieholm, B. Soil solution phosphate, root uptake kinetics and nutrient acquisition: implications for a patchy soil environment. Oecologia 1992, 89: 305–309. |
[3] | Fransen, B.; de Kroon, H.; Berrendees, F. Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia 1998,115: 351–358 |
[4] | Derner, J.; Briske, D. Does a tradeoff exist between morphological and physiological root plasticity? A comparison of grass growth forms. Acta Oecologica 1999, 20: 519–526. |
[5] | Einsmann, J.; Jones, R.; Pu, M.; Mitchell, R. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J.Ecol. 1999, 87: 609–619. |
[6] | Farley, R.; Fitter, A. The responses of 7 co-occurring herbaceous perennials to localized nutrient-rich patches. J. Ecol. 1999, 87: 849–859. |
[7] | Roser, P.; Eek, L. Consequences of phenotypic plasticity vs interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. Am. J. Bot. 2000, 87: 402-411. |
[8] | Fitter A. 1994. Architecture and biomass allocation as components of the plastic response of root system to soil heterogeneity. In: Caldwell MM, Pearcy RW., (eds). Exploitation of environmental heterogeneity by plants. San Diego, CA, USA: Academic Press, Inc, 305–323 |
[9] | Barley, K. The influence of soil strength on the growth of roots. Soil Sci. 1963, 96: 175-180. |
[10] | Barley, K.; Greacen, E. Mechanical resistant as a soil factor influencing the growth and underground shoot. Adv. Agron. 1967,19:1-43. |
[11] | Goss, M. Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.) I. Effects on the elongation and branching of seminal root axes. J. Exp. Bot. 1977, 28: 96-111. |
[12] | Masle, J.; Passioura, J. The effect of soil strength on the growth of young wheat plants. Aust. J. Plant Physiol. 1987, 14: 643-656. |
[13] | Benigno, S.; Cawthray, G.; Dixon, K.; Stevens, J. Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils. Plant Growth Regulation 2012, 1-10. 10.1007/s10725-012-9714-2 |
[14] | Bengough, A.; McKenzie1, B.; Hallett, P.; Valentine, T. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany 2011, 62, 1: 59–68. |
[15] | Asead, A.; McGowan, M.; Hebblethwaite, D.; Brereton, J. Effect of soil compaction on growth, yield and light interception of selected crops. Ann. Appl. Biol. 1990, 117: 653-666. |
[16] | Materechera, S.; Dexter, A.; Alston, A.Penetration of very strong soils by seedling roots of different plant species. Plant and Soil 1991, 135: 31-41. |
[17] | Bengough, A.; Bransby, M.; Han,s J.; McKenna, S.; Roberts, T.; Valentine, T. A Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 2006, 57:437-47. |
[18] | Bengough, A.; Mullins, C. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J. Soil Sci. 1990, 41: 341-358. |
[19] | Bengough, A.; Young, I. Root elongation of seedling peas through layered soil of different penetration resistances. Plant Soil 1993, 149: 129-139. |
[20] | Bengough, A.; Mackenzie, C.; Elangwe, H. Biophysics of the growth responses of pea roots to changes in penetration resistance. Plant Soil 1994, 16:135-141. |
[21] | Young, I.; Montagu, K.; Conroy, J.; Bengough, A. Mechanical impedance of root growth directly reduces leaf elongation rates of cereals. New Phytologist. 1997, 135:613-619. |
[22] | Lipiec, J.; Arvidsson, J.; Murer, E. Review of modelling crop growth, movement of water and chemicals in relation to topsoil and subsoil compaction. Soil Till. Res. 2003, 73:15-29. |
[23] | Whalley, W.; Clark, L.; Finch-Savage, W.; Cope, R. The impact of mechanical impedance on the emergence of carrot and onion seedlings. Plant Soil. 2004, 265: 315-323. |
[24] | Asady, G.; Smucker, A. Compaction and root modifications of soil aeration. Soil Sci. Soc. Am. J. 1989, 53: 251–254. |
[25] | Clark, L.; Whalley,W.; Barraclough,P; How do roots penetrate strong soil?. Plant and Soil. 2003, 255: 93-104. |
[26] | Veen, B.; Boone, F. The influence of mechanical resistance and soil water on the growth of seminal roots of maize. Soil Till. Res. 1990, 16:219-226. |
[27] | Masuka, B.; Araus, J.; Das, B.; Sonder, K.; Cairns, J. Phenotyping for Abiotic Stress Tolerance in Maiz. Journal of Integrative Plant Biol. 2012, 54, 4: 238–249. |
[28] | Boeuf-Tremblay, V.; Plantureux, S.; Guckert, A. Influence of mechanical impedance on root exudation of maize seedlings at two development stages. Plant Soil 1995, 172: 279-87. |
[29] | Estabrook, E.; Yoder, J. Plant-Plant Communications: Rhizosphere Signaling between Parasitic Angiosperms and Their Hosts. Plant Phy. 1998,116: 1-7 |
[30] | Groleau-Renaud, V.; Plantureaux, S.; Guckert, A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponics conditions. Plant Soil. 1998, 201: 231-329. |
[31] | McCully, M. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Biol. 1999, 50:695-718. |
[32] | Groleau-Renaud, V.; Plantureux, S.; Tubeileh, A.; Guckert, A. Influence of microflora and composition of root bathing solution on root exudation of maize plants. J. Plant Nutrition. 2000, 23: 1283-1301. |
[33] | Birkett, M.; Chamberlain, K.; Hooper, A.; Pickett J. Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants? Plant Soil 2001, 232:31-39. |
[34] | Whitmore, A.; Richard, W. Physical effects of soil drying on roots and crop growth. J. Exp. Bot. 2009, 60:2845-2857 |
[35] | Bertin, C.; Yang, X.; Weston, L. The role of root exudates and allelochemicals in the rhizospohere. Plant Soil. 2003, 256:67-83. |
[36] | Walker, T.; Bais, H.; Grotewold, E.; Vivanco, J. Root Exudation and Rhizosphere. Plant Physiol. 2003, 132: 44-51. |
[37] | Kobayashi, K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol Manag. 2004, 4:1-7. |
[38] | Weir, T.; Park, S.; Vivanco, J. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol. 2004, 7: 472-479. |
[39] | Inderjit. Soil microorganism: An important determinant of allelopathic activity. Plant Soil. 2005, 274: 227-236. |
[40] | Kuchenbuch, R.; Ingram, K. Effects of soil bulk density on seminal and lateral roots of young maize plants (Zea mays L.). J. Plant Nutr. Soil Sc. 2004,167: 229-235. |
[41] | Belz, R.; Hurle, K. Differential Exudation of Two Benzoxazinoids-One of the Determining Factors for Seedling Allelopathy of Triticae Species. J. Agric. Food Chem. 2005, 53:250-261. |
[42] | Wu, H.; Haig, T.; Pratley, J.; Lemerle, D.; An, M. Distribution and exudation of allelochemicals in wheat Triticum aestivum. J. Chem. Ecol. 2000, 26:2141-2154. |
[43] | Schonwitz, R.; Ziegler, H. Exudation of water-soluble vitamins and of some carbohydrates by intact root maize seedlings (Zea mays) into a mineral nutrient solution. Z. Pflanzenphysiol. 1982, 107:7-14. |
[44] | Barber, D.; Gunn, K. The effect of mechanical force on the exudation of organic substances by the root of cereal crops grown under sterile conditions. New Phytologist 1974, 73: 39-45. |
[45] | Lynch, J. Rhizosphere microbiology and its manipulation. Biol. Agric. Hortic. 1986,143-152. |
[46] | Potocka, I.; Szymanowska-Pułka, J.; Karczewski,J.; Nakielski, J. Effect of mechanical stress on Zea root apex. I. Mechanical stress leads to the switch from closed to open meristem organization. J Exp Bot. 2011, 62: 4583–4593. |
[47] | Pérez, F.; Ormeño-Nuñez, J. Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): possible role in allelopathy. J. Chem. Ecol. 1991, 17:1037-43. |
[48] | Yu, J.; Matsui, Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 1997, 23: 817-827. |
[49] | Belz, R.; Hurle, K. A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol. 2004, 30:175-198. |
[50] | Kato-Noguchi, H. Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemicals. J. Plant Physiol. 2004, 161:271-276. |
[51] | Seal, A.; Haig, T.; Pratley, J. Evaluation of Putative Allelochemicals in Rice Root Exudates for Their Role in the Suppression of Arrowhead Root Growth. J. Chem. Ecol. 2004, 30:1663-1678. |
[52] | Higashinakasu , K.; Yamada, K.; Shigemori, H.; Hasegawa, K. Isolation and identification of potent stimulatory allelopathic substances exuded from germinating burdock (Arctium lappa) seeds. Heterocycles. 2005, 65:1431-1437. |
[53] | Nishihara, E.; Parez, M.; Araya, H.; Kawashima, S.; Fujii, Y. L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul. 2005, 45:113-120. |
[54] | Reberg-Horton, S.; Burton, J.; Danehower, D.; Ma, G.; Monks, D.; Murphy, J.; Ranells, N.; Williamson, J.; Creamer, N. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 2005, 31:179-193. |
[55] | Yonging, M. Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biol. Manag. 2005. 5:93-104. |
[56] | Eljarrata, E., Guillamóna, M., Seumaa, J., Mogensenb, B., Fomsgaard, I., Olivero-Bastidas, A., Macías, F., Stochmal, E.,Oleszek, W. O. Shakalienef, Barceló, D. (2004) First European interlaboratory study of the analysis of benzoxazinone derivatives in plants by liquid chromatography J. Chromatogr. A, 1047: 69–76. |
[57] | Price, M.; Butler, L. Rapid visual estimation and spectrophotometric determination of tannin content in Sorghum grain. J. Agric. Food Chem. 1977, 25:1268-1273. |
[58] | Alonso-Amelot, M.; Oliveros, A.; Calcagno-Pisarelli, M. Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. A field study in the Venezuelan Andes. Biochem. Syst. Ecol. 2004.32:969-981. |
[59] | Zacarias, L.; Reid, M. Inhibition of ethylene action prevents root penetration through compressed media by tomato (Lycopersicon esculentum) seedlings. Physiol. Plantarum. 1992, 86:301-7. |
[60] | Clark, L.; Whalley, W.; Leigh, R.; Dexter, A.; Barraclough, P. Evaluation of agar and agarose gels for studying mechanical impedance in rice roots. Plant Soil. 1999,207:37-43. |
[61] | Wilson, A.; Robards, A.; Goss, M. Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.). II Effects on cell development in seminal roots. J. Exp. Bot. 1977, 28:1216–1228. |
[62] | Kidd, P.; Llugany, M.; Poschenrieder, C.; Gunse, B.; Barcelo, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 2001, 52:1339-1352. |
[63] | Wagatsuma, T.; Ishikawa, S.; Akimoto, T.; Tawaraya, K.; Ofei-Manu, P. Mechanisms of higher tolerance of Al stress in phosphorus deficient maize seedlings: The significance of phenolic in Al resistance. Developments in Plant Soil Sci. 2001, 92:454-455. |
[64] | Jones D, Darrah P. 1993. Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. II. Experimental and model evidence for simultaneous exudation and re-sorption of soluble carbon compounds. Plant Soil. 1993, 153: 47-59. |
[65] | Mench, M.; Morel, J.; Guckert, A.; Guillet, B. Metal binding with root exudates of low molecular weight. J. Soil Sci. 1988, 39: 521-527. |
[66] | Niemeyer, H. Hydroxamic Acids Derived from 2-Hydroxy- 2H-1,4-Benzoxazin 3(4H)-one: Key Defense Chemicals of Cereals. J. Agric. Food Chem. 2009, 57:1677-1696. |
[67] | Grineva, G. 1961. Excretion by plant roots during brief periods of anaerobiosis. Sov.Plant Physiol. 1961, 8:5498-552. |
[68] | Taylor, H.; Arkin, G. 1981. Root zone modification: Fundamentals and alternatives. In Modifying the Root Environment to Reduce Crop Stress (G.F. Arkin and H.M. Taylor, Ed.). American Society of Agricultural Engineers, St. Joseph, Missouri, ASAE Monograph, p. 3–17. |
[69] | Rovira, A. Plant root exudates. Bot. Rev.1969, 35: 35-57. |