Journal of Health Sciences
2012; 2(4): 38-42
doi: 10.5923/j.health.20120204.04
Jehad M. Yousef , Enas N. Danial
Biochemistry Department, Sciences Faculty for Girls, King Abdulaziz University, P. O. Box 51459, Jeddah- 21453, Saudi Arabia
Correspondence to: Enas N. Danial , Biochemistry Department, Sciences Faculty for Girls, King Abdulaziz University, P. O. Box 51459, Jeddah- 21453, Saudi Arabia.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
In the emerging issue of increased multi-resistant properties in food borne pathogens, zinc oxide (ZnO) and nano-particle zinc oxide (nano-ZnO) are being used increasingly as antimicrobial agents. Thus, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of nano-ZnO towards pathogens microbes Bacillus subtilus NRRL B-543, Bacillus megaterium ATCC 25848, Staphylococcus aureus; NRRL B-313, Sarcina lutea ATCC27853, Escherichia coli; NRRL B-210, Pseudomonas aeruginosa NRRL B23 27853, Klebsiella pneumoniae ATCC 27736, proteus vulgaris NRRL B-123, Candida albicans NRRL Y-477 and Aspergillus niger NRRL-3 were examined in this study. The results obtained suggested that nano-Zno exhibit a good bacteriostatic effect but poor bactericidal effect towards all pathogens tested. Nano-ZnO can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues.
Keywords: Nano Particles, Antimicrobial Activity Zinc Oxide Nano-Zinc Oxide
Figure 1. Antimicrobial activity of ZnO and nano –ZnO against pathogenic microorganisms |
[1] | West J.L. and Halas N.J. (2000): Applications of nanotechnology to biotechnology. Curr. Opin. Biotech. 11: 215. |
[2] | Zandonella C. (2003): Cell nanotechnology: The tiny toolkit. Nature; 423: 10-12. |
[3] | Tom R.T., Suryanarayanan V., Ganapati Reddy P. Baskaran, S. and Pradeep T. (2004): Ciprofloxacin-Protected Gold Nanoparticles. Langmuir; 20:1909-1914. |
[4] | Jarvinen H., Tenovuo, J. and Huovinen P. (1993): In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother; 37(5): 1158–1159 |
[5] | Concannon S.P., Crowe T.D., Abercrombie J.J., Molina, C.M., Hou, P. and Sukumaran D.K. (2003): Susceptibility of oral bacteria to an antimicrobial decapeptide. J Med. Microbiol. 52:1083–1093. |
[6] | Altman H., Steinberg D., Porat Y., Mor A., Fridman D. and Friedman M. (2006): In vitro assessment of antimicrobial peptides. J Antimicrob Chemother; 58:198–201. |
[7] | Daglia M., Papetti A., Grisoli P., Aceti C., Dacarro, C. and Gazzani G. (2007): Antibacterial activity of red and white wine against oral streptococci. J. Agric. Food Chem. 55: 5038– 5042. |
[8] | Jain D., Kumar Daima H., Kachhwaha S. and Kothari S. L.(2009): Synthesis of Plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. A. Digest Journal of Nanomaterials and Biostructures: 4, 557 – 563. |
[9] | Lu S, Duffin R, Poland C, Daly P, Murphy F, Drost E, MacNee M, Stone V and Donaldson K. (2009). Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117:241–247. |
[10] | Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G and Alexander A. (2006): Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22. |
[11] | Sawai J. and Yoshikawa T. (2004): Quantitative Evaluation of Antifungal Activity of Metallic Oxide Powders (MgO, CaO and ZnO) By an Indirect Conductimetric Assay, J. Appl. Microbiol. 96, 803. |
[12] | Sawai J., Doi R., Maekawa Y., Yoshikawa T., and Kojima H. ( 2002): Short Communication Indirect Conductimetric Assay of Antibacterial Activities,” J. Ind. Microbiol. Biotech. 29: 296. |
[13] | Stoimenov P. K., Klinger R.L., Marchin G.L, and Klabunde K.J, (2002): Metal Oxide Nanoparticles as Bactericidal Agents, Langmuir 18, 6679. |
[14] | Brayner R., Ferrari-lliou R., Brivois N., Djediat S., Benedetti M. F., and Fievet F. (2006): Toxicological Effect of ZnO Nanoparticles Based on Bacteria,” Nano Lett. 6: 866 |
[15] | Nagarajan P. and Rajagopalan V. (2008): Enhanced bioactivity of ZnO nano-particles—an antimicrobial study. Environ. Sci. Technol. 9 (035004), 7-15 |
[16] | Baxter J. B. and Aydil E.S. ( 2005): Nanowire based dye sensitized solar cells. Appl. Phys. Lett. 86, 53114, 2005. |
[17] | Asai T., Kojima A., Harada K., Ishihara K., Takahashi T. and Tamura Y. (2005): Correlation between the usage volume of veterinary therapeutic antimicrobials and resistance in Escherichia coli isolated from the feces of food-producing animals in Japan. Journal of Infectious Diseases 58: 369-372 |
[18] | Olofsson S.K. (2006): Relation between drug exposure and selection of antibiotic resistant bacteria. Uppsala, Sweden: Uppsala University, Faculty of Medicine, Dissertation |
[19] | Phillips I., Casewe M., Cox T., Groot D.B., Friis C., Jones R., Nightingale C., Preston R. and Waddell J. (2004): Does the use of antimicrobials in food animals pose a risk to human health? Journal of Antimicrobial Chemotherapy 53, 28-52. |
[20] | Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H. and Cho M.H.(2007): Antimicrobial effects of silver nanoparticles. Journal of Nanomedicine 3(1): 95-101. |
[21] | Sawai J., Igarashi H., Hashimoto A., Kokugan,c T. and Shimizu M. (1996): Antibacterial Characteristics of Magnesium Oxide Powder. J. Chem. Eng. Japan 29, 556 |
[22] | Wang Z.L. (2004): Functional Oxides Nanobelts Materials, Properties and Potential Applications in Nanosystems and Biotechnology, Annu. Rev. Phys. Chem. 55(159): 1656-1662 |
[23] | Song J., Zhou J., and Wang Z.L. (2006): Piezoelectric and Semi conducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano, Lett. 6: 1656. |
[24] | Huang M.H., Mao S., Feick H., Yan H.Q., Wu Y., Kind H., Weber E., Russo R, and Yang P.(2001): ZnO Microrods Photodeposited with Au–Ag Nanoparticles: Synthesis, Characterization and Application, In Sers. Science 292: 1897 |
[25] | Perez C., Pauli M. and Bazevque P. (1990) An antibiotic assay by the agar well diffusion method. Acta Biologiae et Medicine Experimentalis 15, 113-115 |
[26] | Chwalibog A., Sawosz E., Hotowy A., Szeliga J., Mitura S., Mitura K., Grodzik M., Orlowski P. and Sokolowska, A. (2010): Visualization of interaction between inorganic nano-particles and bacteria or fungi. International Journal of Nanomedicine; 5, 1085–1094. |
[27] | Nirmala G. A. and Pandian K. (2007): Antibacterial efficacy of aminoglycosidic antibiotics protected gold nano-particles a brief study. Colloids and Surfaces a: Physicochem. Eng. Aspects 297: 63–70. |
[28] | Sunada K., Kikuchi Y., Hashimoto K. and Fujshima A. (1998): Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ.Sci.Technol. 32 (5), 726–728. |
[29] | Fang M., Chen J. H., Xu X. L., Yang P. H. and Hildebr H. F. (2006): Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests Int. J. Antimicrob. Agents 27, 513-517 |
[30] | Blake M. D., Maness P., Huang Z., Wolfrum E. J., Huang J. and Jacoby W. A. (1999): Application of the photo catalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep. Purif. Methods 28 (1)1-50 |
[31] | Zawrah M. F. and Abd El-Moez S. I. (2011): Antimicrobial Activities of Gold Nanoparticles against Major Foodborne Pathogens Life Science Journal. 8(4) 37-44 |
[32] | Avanzato C. P., Folliri J. M. and Banerjee I. A. (2009): Bio mimetic Synthesis and Antibacterial Characteristics of Magnesium Oxide–Germanium dioxide Nano-composite Powders Journal of composite materials, 43 (8), 897-910 |
[33] | Nawaz H. R., Solangi B. A., Zehra B. and Nadeem U. (2011): Preparation of Nano Zinc Oxide and its Application in Leather as a Retaining and Antibacterial Agent. Canadian Journal on Scientific and Industrial Research. 2 (4): 164-170 |