Geosciences
p-ISSN: 2163-1697 e-ISSN: 2163-1719
2012; 2(6): 151-156
doi: 10.5923/j.geo.20120206.01
Bagus Jaya Santosa , Ayi Syaeful Bahri
Physics Dept., FMIPA, ITS, Jl Arif Rahman Hakim 1, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
Correspondence to: Bagus Jaya Santosa , Physics Dept., FMIPA, ITS, Jl Arif Rahman Hakim 1, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
We have investigated the S and P wave structure between Mexico and SBC station, California. The data that was used is from a C052297B event, Guerrero, Mexico; it was fitted to synthetic data. A low-pass filter is subjected to the seismograms with corner frequency of 20 mHz. Waveform analysis results show very unsystematic and strong deviation in the waveform. Discrepancies are met on S, Love, Rayleigh and ScS waves. We can see how sensitive the waveform is to structures within the layers of the Earth. To accomplish the discrepancies, the corrections was conducted for the crust thickness, gradient of h, the coefficient for the h and v in the upper mantle for surface wave fitting, a small variation of the S speed structure at a layer under the upper mantle above depth of 771 km from earth surface for S wave fitting, and a small variation at the base mantle layers (CMB) for ScS and ScS2 waves fitting.
Keywords: Seismogram Fitting, S Wave Velocity Structure, Upper Mantle – CMB
Cite this paper: Bagus Jaya Santosa , Ayi Syaeful Bahri , "The S and P Wave Velocity Structure under California, USA by Analyzing the Seismogram of C052297B Earthquake on SBC Station", Geosciences, Vol. 2 No. 6, 2012, pp. 151-156. doi: 10.5923/j.geo.20120206.01.
![]() | Figure 1. The San Andreas Fault in central California |
![]() | Figure 2. Ray path from epicenter to SBC station |
![]() | Figure 3. Seismogram comparison in observation station SBC between the data and synthetics one from PREMAN and IASPEI91. Time window for P wave |
![]() | Figure 4. Seismogram comparison in observation station SBC between the data and synthetics one from PREMAN and IASPEI91. Time window for S, L & R Wave |
![]() | Figure 5. Seismogram fitting in observation station SBC in time windows for P wave |
![]() | Figure 6. Seismogram fitting in observation station SBC in time windows for S, L and R waves |
![]() | Figure 7. Seismogram fitting in observation station SBC in time windows for ScS wave |
![]() | Figure 8. Seismogram fitting in observation station SBC in time windows for ScS2 wave |
[1] | Ellsworth, W.L., 1995, Characteristic earthquakes and long-term earthquake forecasts: implications of central California seismicity, in Cheng, F.Y., and Sheu, M.S., eds., Urban Disaster Mitigation: the Role of Science and Technology, Elsevier, p. 1-14. |
[2] | Waldhauser, F., W. L. Ellsworth, and A. Cole (1999). Slip-parallel seismic lineations on the northern Hayward Fault, California, Geophys. Res. Lett. 26, 3525–3528. |
[3] | Rubin, A.M., D. Gillard, and J.-L. Got, 1999, Streaks of microearthquakes along creeping faults, Nature, 400, 635-641. |
[4] | Nolet, G. and A. Zielhuis, 1994. Low S velocities under the Tornquist-Teisseyre zone: evidence for water injection into the transition zone by subduction, J. Geophysics. Res., 99, 15813 – 15820. |
[5] | Feng, M., M. Assumpção, and S. van der Lee, 2004. Group-velocity tomography and lithospheric S-velocity structure of the South American continent, Phys. of the Earth and Plan. Int., 147, 315 – 331 |
[6] | S. van der Lee, S, David, J., and Silver, P., 2001. Upper mantle S-velocity structure of central and western South America, Journal. of Geophysics. Res., 106, No. 12, 30.821 – 30.885. |
[7] | Castle, J.C. and van der Hillst, R.D., 2000. The core mantle boundary under the Gulf of Alaska: No ULVZ for shear waves, Earth and Plan. Sci. Letters, 176, 311 – 321. |
[8] | Frederiksen, A.W., Bostock, M.G., van Decar, J.C. and Cassidy, J.F., 1998. Seismic structure of the upper mantle beneath the northern Canadian Cordillera from teleseismic travel-time inversion, Tectonophysics, 294, 43 – 55. |
[9] | Garnero, E.J. and Lay T., 2003. D" shear velocity heterogeneity, anisotropy and discontinuity structure beneath the Caribbean and Central America, Phys. of the Earth and Plan. Int., 140, 219 – 242. |
[10] | Souriau, A. and Poupinet, G., 1991. A study of the outermost liquid core using differential travel times of the SKS, SKKS and S3KS phases, Phys. of the Earth and Plan. Int., 68, Issue 1 – 2, 183 – 199. |
[11] | Wysession, M.E., Valenzuela, R.W., Zhu, A. and Bartkö L., 1995. Investigating the base of the mantle using differential travel times, Phys. of the Earth and Plan. Int., 92, 67 – 84. |
[12] | Dziewonski, A., Block, S., Landisman, M., 1969, A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., 59, 427 -- 444 |
[13] | Herrin, E. and Goforth, T., 1977, Phase-matched filters: Application to study of Rayleigh Waves., Bull. Seism. Soc. Am., 67, 1259 – 1275. |
[14] | Okabe, A., Kaneshima, S., Kanjo, K. Ohtaki, T. and Purwana, I., 2003. Surface wave tomography for southeastern Asia using IRIS-FARM and JISNET data, Phys. of the Earth and Plan. Int., 146, 101 – 112. |
[15] | Zhao, D,, 2004. Global tomographic imaging of mantle plumes and subducting slabs : Insight into deep Earth dynamics}, Phys. of the Earth and Plan. Int., 146, 3 – 34. |
[16] | D. van Manen, Robertsson, J. O. A., Curtis, A., Ferber, R. and Paulssen, H., 2009. Shear wave statics using receiver functions, Geophysics. J. Int., 153, F1 – F5. |
[17] | Santosa, B.J., 1999. Möglichkeiten und Grenzen der Modellierung vollständiger lang-periodischer Seismogramme, Doktorarbeit, Berichte Nr. 12, Inst. für Geophysik, Uni. Stuttgart. |
[18] | Bulland, R. and Chapman, C., 1983. Travel time Calculation, BSSA, 73, 1271 – 1302, 1983 |
[19] | Dalkolmo, J., 1993. Synthetische Seismogramme für eine sphärisch symmetrische, nichtrotierende Erde durch direkte Berechnung der Greenschen Funktion, Diplomarbeit, Inst. für Geophys., Uni. Stuttgart. |
[20] | Friederich, W. and Dalkolmo, J., Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the green's function in the frequency domain, Geophysics. J. Int., 122, 537 – 550, 1995. |
[21] | Friederich W., 1997. Regionale, dreidimensionaleStrukturmodelle des oberen Mantel aus der wellentheoritischen Inversion teleseismischer Oberflächenwellen, Berichte des Instituts für Geophysik der Universität Stuttgart, 9. |