Frontiers in Science
p-ISSN: 2166-6083 e-ISSN: 2166-6113
2017; 7(4): 57-64
doi:10.5923/j.fs.20170704.02
Anatoli Kuznetsov
Institute of Physics, University of Tartu, Tartu, Estonia
Correspondence to: Anatoli Kuznetsov, Institute of Physics, University of Tartu, Tartu, Estonia.
Email: |
Copyright © 2017 Scientific & Academic Publishing. All Rights Reserved.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
We present the formula for the mass spectrum of the charged composite particles (CP). This formula includes the renormalized fine-structure constant α =1/128.330593928, the rest mass of a new electrically charged particle m = 156.3699214 eV/c^{2} and two quantum numbers of n and k. The half–integer and integer quantum number n is the projection of an orbital angular momentum electrically charged particle on the symmetry axis of the CP, and the integer k defines the magnetic charges of two Dirac magnetic monopoles, which have opposite signs of magnetic charges and masses. The presented model predicts the values of spins, masses, charge orbit radii and magnetic moments for an infinite number of charged fermions and bosons in the infinite range of mass.
Keywords: Composite models, Formula for the mass spectrum of elementary particles, Magnetic monopoles, Periodic dependence
Cite this paper: Anatoli Kuznetsov, Formula for the Mass Spectrum of Charged Fermions and Bosons, Frontiers in Science, Vol. 7 No. 4, 2017, pp. 57-64. doi: 10.5923/j.fs.20170704.02.
(1) |
(2) |
(3) |
(4) |
(5) |
Figure 1. The rest energy E(n, k) of the charged CP as a function of the quantum number k (which defines the magnetic charge of magnetic monopoles) for six values of the orbital angular momentum n = 1/2, 1, 3/2, 2, 5/2, 3 electrically charged particle. Symbols e, μ, π, K, p, τ represent the position of the corresponding charged elementary particles on the graph |
Figure 2. The charge orbit radius R(n, k) of the charged CP as function of the quantum number k (which defines the magnetic charge of magnetic monopoles) for six values of the orbital angular momentum n = 1/2, 1, 3/2, 2, 5/2, 3 electrically charged particle. Symbols e, μ, π, K, p, τ represent the position of the corresponding charged elementary particles on the graph |
[1] | J. J. Thomson, “Cathode Rays”, Phil. Mag., vol. 44, 1-24, 1897. |
[2] | M. Abraham, “Prinzipen der Dynamic des Elektrons”, Ann. Phys., vol. 315, 105-179, 1903. |
[3] | H. A. Lorentz, “Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than That of Light”, Proceedings of the Royal Netherlands Academy of Arts and Sciences, vol. 6, 809-831, 1904. |
[4] | H. Poincaré, “Sur la dynamique de l'électron”, Comptes Rendus, vol. 140, 1504-1508, 1905. |
[5] | F. Rohrlich, Classical Charged Particles, World Scientific Publishing Company, New York, 2007. |
[6] | J. L. Jimenéz, I. Campos, “MODELS OF THE CLASSICAL ELECTRON AFTER A CENTURY”, Found. Phys. Lett., vol. 12, 127-146, 1999. |
[7] | F. Halzen, A. D. Martin, Qarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley & Sons, New York, 1984. |
[8] | P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons”, Phys. Rev. Lett., vol. 13, 508-509, 1964. |
[9] | H. Harari, “A schematic model of quarks and leptons”, Phys. Lett. B, vol. 86, 83-86, 1979. |
[10] | M. A. Shupe, “A composite model of leptons and quarks”, Phys. Lett. B, vol. 86, 87-92, 1979. |
[11] | E. J. Squires, “Qdd: A Model of Quarks and Leptons”, Phys. Lett. B, vol. 94, 54, 1980. |
[12] | J.-J. Dunge, S. Fedriksson and J. Hansson, “Preon trinity − A schematic model of leptons, quarks and heavy vector bosons”, Europhys. Lett., vol. 60, 188-194, 2002. |
[13] | L. Lyons, “An Introduction to the Possible Substructure of Quarks and Leptons”, Progress in Particle and Nuclear Physics, vol. 10, 227-304, 1983. |
[14] | A. O. Barut, “THE MASS OF THE MUON”, Phys. Rev. Lett., vol. 73B, 310-312, 1978. |
[15] | A. O. Barut, “Lepton mass Formula”, Phys. Rev. Lett., vol. 42, 1251, 1979. |
[16] | P. A. M. Dirac “Quantised Singularities in the Electromagnetic Field”, Proc. Roy. Soc., vol. A 133, 60-72, 1931. |
[17] | Y. Koide, “Charged lepton mass relations in a supersymmetric Yukawaon model”, Phys. Rev. D., vol. 78, 093006, 2008; arXiv: 0811.3470 [hep-ph]. |
[18] | K. Loch, “A new empirical approach to quark and lepton masses”, viXra: 1702.0332 [High Energy Particle Physics]. |
[19] | A. S. Kuznetsov, “Possible gravitoelectric dipole moment of neutrinos, atmospheric and solar neutrino anomalies”, Physics Essays, vol. 21, 144-150, 2008. |
[20] | P. A. M. Dirac, “The quantum theory of the electron”, Proc. Roy. Soc., vol. A 117, 610-624, 1928. |
[21] | D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., Cambridge CB2 8BC, United Kingdom, Cambridge University Press, 2017, Chapt. 2, p. 68. |
[22] | P. J. Mohr, D. B. Newell and B. N. Taylor, “CODATA recommended values of the fundamental physical constants: 2014”, Rev. Mod. Phys., vol. 88, 035009, 2016. |
[23] | I. Levine et al., “Measurement of the Electromagnetic Coupling at Large Momentum Transfer”, Phys. Rev. Lett., vol. 78, 424-427, 1997. |
[24] | D. I. Mendeleev, “The Correlation of the Properties and Atomic Weights of the Elements”, J. Russ. Phys. Chem. Soc., vol. 1, 60-77, 1869; “Uber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente”, Z. Chem., vol. 12, 405-406, 1869. |
[25] | C. Patrignani et al., (Particle Data Group), Chin. Phys. C, vol. 40, 100001, 2016. |
[26] | M. J. MacGregor, The power of α Electron Particle Generation with α−Quantized Lifetimees and Masses, World Scientific, Singapore, 2007, Chapt. 1, p. 64. |
[27] | R.W. McAllister, R. Hofstadter, “Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle”, Phys. Rev., vol. 102, 851- 856, 1956; Kirk P. N. et al., “Elastic Electron-Proton Scattering at Large Four-Momentum Transfer”, Phys. Rev. D, vol. 8, 63-91, 1973. |
[28] | M. Agostini et al., “Test of Electric Charge Conservation with Borexino”, Phys. Rev. Lett., vol. 115, 231802, 2015. |
[29] | H. Nishino et al., “Search for Proton Decay via p→e+π0 and p→μ+π0 in a Large Water Cherenkov Detector”, Phys. Rev. Lett., vol. 102, 141801, 2009. |
[30] | M.L. Perl et al., “Evidence for Anomalous Lepton Production in e+-e− Annihilation ”, Phys. Rev. Lett., vol. 35, 1489, 1975. |
[31] | P. Giromini et al., “Phenomenological interpretation of the multi-muon events reported by the CDF collaboration”, arXiv: 0810.5730 [hep-ph]. |
[32] | T. Aaltonen et al., “Study of multi-muon events produced in interactions at TeV”, Eur. Phys. J. C, vol. 68, 109-118, 2010); arXiv: 0810.5357 [hep-ex]. |
[33] | J. Einasto, A. Kaasik, E. Saar, “Dynamic evidence on massive coronas of galaxies”, Nature, vol. 250, 309-310, 1974; J. Einasto, “Dark Matter”, arXiv: 0901.0632 [astro-ph]. |
[34] | A. L. Fitzpatrick, D. Hooper and K. M. Zurek, “Implications of CoGeNT and DAMA for light WIMP dark matter”, Phys. Rev. D., vol. 81, 115005-1−115005-14, 2010. |
[35] | D. E. Kaplan, M. A. Luty and K. M. Zurek K, “Asymmetric Dark Matter”, Phys. Rev. D., vol. 79, 115016, 2009. |
[36] | L. Janossy and C. B. A. McCUSKER, “The Nature of Penetrating Particles in Air Showers”, Nature, vol. 163, 181-183, 1949. |
[37] | E. W. Cowan, “Evidence for the Existence of a Low-Mass Mesotron”, SCIENCE, vol. 108, 534-535, 1948. |
[38] | A. S. Kuznetsov, “Asymmetry of the Angular Distribution of the II-Component of Synchrotron Radiation (SR), Caused by Electron Spin Polarization along the Acceleration Vector”, Europhys. Lett., vol. 21 (5), 545-549, 1993. |
[39] | A. Kuznetsov and E. Vilt, “Optical characteristics of the LIS-2 pulsed synchrotron”, Nucl. Inst. Meth. in Physics Research, vol. A308, 92-93, 1991. |