[1] | Fukushima, T.e.a., Intercalation behavior and tensile strength of DNA-lipid films for the dental application. Biomaterials, 2004. 24: p. 5991-7. |
[2] | Inoue, I.e.a., Antifıngal activity of DNA-lipid complexes and DNA-lipid films against Candida species. Journal of Biomedical Materials Research Part A, 2005. 76A(1): p. 1265-132. |
[3] | Goyal, A.K., A.; et.al., In Situ Synthesis of Metal nanoparticle Embedded Free Standing Multifunctional PDMS Films. Macromolecular Rapid Communivation, 2009. 30: p. 1116-1122. |
[4] | Porel, S.R., D.; etr. al., Polymer Thin Film with in situ synthesized silver nanoparticles as a potent reusable bectericide. Current Science, 2011. 101(7): p. 927-934. |
[5] | Chawengkijwanich, C.H., Y., Development of TiO2 powder-coared food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 2008. 123: p. 288-292. |
[6] | Xihong, L.X., Yage; Jiang, Yunhong; Ding, Yulong; Weili, Li, Antimicrobial activities of ZnO powder coated PVC film to inactivate food pathogens. International Journal of Food Science and Technology, 2009. 44(11): p. 2161-2168. |
[7] | Quintavalla, S.V., L., Antimicrobial food packaging in meat industry. Meat Science, 2002. 62: p. 373-380. |
[8] | Kandemir, N.e.a., Production of antimicrobial films by incorporation of partially purified lysozome into biodegradable films of crude exopolysaccharides obtained from aureobasidium oullulans fermentation. Food Technology and Biotechnology, 2005. 43(4): p. 343-350. |
[9] | Perez-Perez, C.e.a., Incorporation of antimicrobial agents in food packaging films and coatings. Advances ,n Agricultural and Food Biotechnology, 2006. 2: p. 194-216. |
[10] | Bastarrachea, L.D., S., Engineering properties ofpolymeric-based antimicrobiaql films for food packaging. Food Engineering Reviews, 2011. 3: p. 79-93. |
[11] | Appendini, P.H., J. H., Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 2002. 3: p. 113-126. |
[12] | Kavas, G.K., N., Gıda ambalajlamasında biyonanokompozit yanilebilir filmler. Gıda Dergisi, 2010. 1: p. 95-97. |
[13] | Hoffman, K.L.H., I. Y.; Dawson, P.L., Antimicrobial Effects on Corn Zein Films Impregnated with Nisin, Lauric Acid and EDTA. Journal of Food Protection, 2001. 64: p. 885-889. |
[14] | Liu, Z.H., J. H. , Film-forming Characteristics of Starches. Journal of Food Science, 2005. 70(1): p. E31-E36. |
[15] | Chen, L.I., Syed, H.; Gordon, Sherald, H.; Greene, Richard, V., Starch-Polyvinyl Alcohol Crosslinked Film-Performance and Biodegradation. Journal of Environmental Polymer Degradation, 1997. 5(2111-117). |
[16] | Risbud, M.V.B., S. V. , Properties of polyvinyl pyrrolidone\β-chitosan hydrogel membranes and their biocompatibility evaluation by haemorheological method. Journal of Materials Science: Materials in Medicine, 2001. 12: p. 75-79. |
[17] | Cha, D.S.C., Jin Hyuk; Chinnan, Manjeet S.; Park, Hyun Jin, Antimicrobial Films Based on Na-alginate and κ-carrageenan. Food science & technology, 2002. 36(8): p. 715-719. |
[18] | Muthuswamy, E.R., S. Sree; Vasan H.N; Garcia Cecile; Noe, Laure; Verelst Marc Highly stable Ag nanoparticles in agar-agar matrix as inorganic-organic hybrid. Journal of Nanoparticle Research, 2006. 9: p. 561-567. |
[19] | Sarasawathy, N.e.a., A Preliminary investigation of tumeric-agar composite film as bioactive wound dressing material on excision in rat model. Indian Journal of Natural Products and Resources, 2012. 3(2): p. 237-241. |
[20] | Nohynek, G.A., E; Re, T; Toutain, H, Safety assessment of personal care products/cosmetics and their ingredients. Toxicology and Applied Pharmacology, 2010. 243(2): p. 239-259. |
[21] | Padmavathy, N.V., R., Enhanced Bioactivity of ZnO nanoparticles- an antimicrobial study. Science and Technology of Advanced Materials, 2008. 9. |
[22] | Rajendran, R., C. Balakumar, Hasabo A. Mohammed Ahammed, S. Jayakumar, K. Vaideki and E.M. Rajesh, Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering,Science and Technology, 2010. 2(1): p. 202-208. |
[23] | Perelshtein, I., G. Applerot, E. Wehrchetz, A. Hasmann, M. Guebitz and A. Gedanken, Antibacterial Properties of an In Situ Generated and Simultaneously DepositedNanocrystalline ZnO on Fabrics. American Chemical Society, 2008. 1(2): p. 361-366. |
[24] | Ghule, K., Anil Vithal Ghule, Bo-Jung Chen, and Yong-Chien Ling, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry, 2006. 8: p. 1034-1041. |
[25] | Jin, T.S., D. ; Su, J. Y. ; Zhang, H. ; SWue, H. J., Antimicrobial Efficacy of Zinc Oxide Quantum Dots against Lysteria monocytogenes, Salmonella enteridis and Escherichia coli O157:H7. Journal of Food Science, 2009. 74(1): p. M46-M52. |
[26] | Sharma, S.T., Alex; Nalamasu, Omkaram and Dutta, P. S, Spin-Coated ZnO Thin Films Using ZnO Nano-Colloid. Journal of Electronic Materials, 2010. 35(6): p. 1237-1240. |
[27] | IMSL, JIS Z2801:2000. Antimicrobial product-test for antimicrobial activity and efficacy. 2001, Japanese Industrial Standard. |
[28] | Patterson, A., The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 1939. 56(10): p. 978-982. |
[29] | S Swinkels, J.W.G.M.K., Ervin T.; Verstegen, Martin W.A., Biology of Zinc and Biological Value of Dietary organic Zinc Complexes and Chelates. Nutrition Research Reviews, 1994. 7(1): p. 129-149. |
[30] | Applerot,G.; at al.; Enhanced Activity of nanocrystalline ZnO Due to Increase ROS-Mediated Cell Injury.Advanced Functional materials, 2009. 19: 842-852. |
[31] | Zhang, L.; et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 2007. 9: p.479-489. |
[32] | Sawai, J.S., S; Igarashi, H; Hashimoto, A; Kokugan, T; Shimizu, M; Kojima, H, Hydrojen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of Fermentation and Bioengineering, 1998. 86(5): p. 521-522. |
[33] | Sawai, J. ; Kawada, E. ; Kanou, F.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M., Detection of Active Oxygen Generated from Ceramic Powders Having Antibacterial activity. Journal of Chemical engineering of Japan, 1996, 29(4):p. 627-633. |
[34] | Yamamoto, O.; Sawai, J.; Sasamoto, T., Activated Carbon Sphere with Antibacterial Characteristics. Materials Transactions, 2002. 43(5): p.1069-1073. |
[35] | URL http://www.codexalimentarius.org/ |
[36] | Zalan, Z.; Nemeth, E.; Barath, A.; Halasz, A., Influence of Growth Medium on Hydrogen Peroxide and Bacteriocin Production of Lactobacillus Strains. Food Technology and Biotechnology, 2005. 43(3): p. 219-225 |