[1] | Ammirato F. and P. Zayicek. (1999) Infrared Thermography Field Application Guide. Electric Power Research Institute, Inc., Palo Alto, CA, Tech. Rep. TR-107142, Jan. 1999. |
[2] | Ann Goth, Ian G. McLean and James Trevelyan (Accessed 2012). How do dogs detect landmines? A summary of research results Available at: http://www.gichd.ch/fileadmin /pdf/publications/MDD/MDD_ch5_part1.pdf |
[3] | Antonic D., (2000) Method for Determining Classification Significant Features from Acoustic Signature of Mine-like Buried Objects, Ministry of the Interior, Zagreb, Croatia, and M. Zagar, Faculty of Electrical Engineering and Computation, University of Zagreb, Zagreb, Croatia. ROMA 2000, 15th WCNDT Available at http://www.ndt.net/article/wncdt00 /toc/landw.htm. |
[4] | Anup Shah (2009), Global Issues – Landmines. Available at: http://www.globalissues.org/article/79/landmines |
[5] | Ashley, S. (1996) Searching for Land mines, Mechanical Engineering, Vol. 118, No 4, 62 |
[6] | Badmus B. S. and Olatinsu O. B., (2010) Aquifer characteristics and groundwater recharge pattern in a typical basement complex, Southwestern Nigeria. African Journal of Environmental Science and Technology, Vol. 4 (6), p329, ISN 1991 – 637X. Available atwww.ajol.info/index.php/ajest/article/view/56371/44806 |
[7] | Ballard R. Jerrell, Jr., George L. Mason, James A. Smith, and Lee K. Balick (2004) Phenomenological Models for Landscape Signatures: Review and Recommendations. Available at http://el.erdc.usace.army.mil/elpubs/pdf/tr04 -2pdf |
[8] | Bangladesh Strategic & Development Forum (2006). Land Mine, history, use, and variants. Available at: http://www.bdsdf.org/forum/index.php?showtopic=32497 |
[9] | Bello Rasaq (2011), Mathematical Modelling of the Effect of Ambient Temperature and Relative Humidity on Soil Surface Temperature during Dry Season in Abeokuta, South Western, Nigeria. Journal of the Nigerian Association of Mathematical Physics, Vol. 18 pp225-230. ISSN: 1116-4336 |
[10] | Rasaq Bello (2012) Evaluating Thermal Properties of Rocks. Journal of the Nigerian Association of Mathematical Physics, Vol. 20. ISSN: 1116-4336 |
[11] | Brooks F. D., Buffler A. and Allie M. S. (2004), Detection of Anti-Personnel Landmines using Neutrons and Gamma Rays. |
[12] | Available at: www.phy.uct.ac.za/people/buffler/RPC04%20 brooks.pdf |
[13] | Buchlin J. M. (2009) Convective Heat Transfer and Infrared Thermography, Journal of Applied Fluid Mechanics, Vol.3, no.1.pp55-62. Available online at www.jafmonline.net. ISSN 1735-3645 |
[14] | Cheung M. Y. Bernard, Lung Sang Chain, Ian J. Lauder and Cyrus R. Kumana. Detection of Human Body Temperature with Infrared Thermographic Imaging: Accuracy and Feasibility in Detection of Fever in Human Subjects. Available at www.temperatures.com/tiapps.html |
[15] | Damir Gorseta, and Josip Tulicic. (2000) Sophisticated facility for antipersonnel landmines detection equipment assessment in realistic conditions. ROMA, 15th WCNDT Available athttp://www.ndt.net/article/wncdt00/toc/landw.htm |
[16] | Damir Markucic, (2000) Possibilities of Materia Classification by Means of Ultrasound, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia. ROMA, 15th WCNDT Available at http://www.ndt.net/article/wncdt00/toc/landw.htm. |
[17] | Datema P. Cor, Victor R. Bom, and Carel W. E. van Eijk (2001), DUNBLAD: the Delft University Neutron Backscattering Landmine Detector. Available at: www.physics.ucla.edu/hep/hep/Mine_Detection/DUNBLAD.pdf |
[18] | Detection Defence Research and Development Canada, Landmine Detection (DRDC). (2007). Available at http://www.dres.dnd.ca/ResearchTech/product/MilEng_Products/RD2001_ILDP/index_e.html |
[19] | Donskoy D. M., (1998) Nonlinear Vibro-acoustic technique for landmine detection, in Detection and Remediation Technologies for Mines and Minelike Targets III, SPIE Proceedings 3392, 211-217. |
[20] | Donskoy D. M., (1999) Detection and Discrimination of nonmetallic Landmines, , in Detection and Remediation Technologies for Mines and Minelike Targets IV, SPIE Proceedings 3710, 239-246. |
[21] | Dzapo M., (2000) System for Assessment of Demining Companies, Centre of Technology Transfer, Zagreb, CROATIA. ROMA, 15th WCNDT Available at http://www.ndt.net/article/wncdt00/toc/landw.htm. |
[22] | Ehinola O. A., Oladunmoye M. A. and Gbademosi T. O. (2009) Chemical composition, geophysical mapping and reserve estimation of clay deposit from parts of Southwestern Nigeria. Journal of Geology and Mining Research, Vol. 1 (3) p057. Available at www.academicjournals.org/jgmr |
[23] | Garnaik S. P. (2009) Infrared thermography: A versatile technology for condition monitoring and energy conservation. Available at http://www.reliabilityweb.com/.../infrared_ thermography _a_versatile_technology.pdf |
[24] | Gucunski Nenad, Vedrana Krstic and Ali Maher (2000), Field Implementation of the Surface Waves for Obstacle Detection (SWOD) Method. Available at www.ndt.net/article/ wcndt00/papers/idn097/idn097.htm |
[25] | Hendrickx Jan M. H. and Brian Borchers (2002), Modeling Thermal, Moisture, Dielectric, and Electromagnetic Signatures for Landmine Detection. Available at http://handle.dtic.mil/100.2/ADA413522 |
[26] | Hoffman Joe D. (2001) Numerical Methods for Engineers and Scientists, Second Edition, Marces Dekker Inc., New York, pp. 232 – 233. |
[27] | Hines D. Allan and Douglas J. Whitely (2001), Infrared Thermography Applications at Dofasco inc. Available at www.ndt.net/apcndt2001/papers/920/920.htm |
[28] | Hsin Wang, Ralph B. Dinwiddle and Samuel Graham (1999), Application of IR Thermography in Capturing Thermal Transients and other High – Speed Thermal Events. Available at www.osti.gov/bridge/servlets/purl/6556-R6Z4E0/.../6556. pdf |
[29] | Hussein E. M. A and Edward J. Waller (2000) Landmine Detection: The Problem and the Challenge, Applied Radiation and Isotopes, Vol 53 pp 557 – 563. |
[30] | Ivanka Boras, Marina Malinovec, Josip Stepanic jr., Srecko Svaic, (2000) Detection of Underground Objects Using Thermography, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia, ROMA, 15th WCNDT Available at http://www.ndt.net/article/ wncdt00/toc/landw.htm. |
[31] | Ivanka Boras, Marina Malinovec, Josip Stepanic jr., Srecko Svaic, (2000) Modeling of buried object detection using thermography. University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia, Available at http://www.ndt.net/article/wncdt00/papers /idn106/idn106.htm |
[32] | International Committee of the Red Cross, (1995) Landmines: Time for Action, (not copyrighted), document 0574/002 published 3/95 by the in Geneva. Available at http://www.icrc.ch/icrcnews/323e.htm |
[33] | Jeffrey Boutwell and Michael T. Klare, (1999) Light Weapons and Civil Conflict – Controlling the tools of Violence. Rowman and Littlefield Publishers, incorporated. |
[34] | John F. Crawfard (2010), Trial of Ground-Penetrating Radar, Neutron and Magnetometry Methods in Arid soil in Egypt. The Journal of ERW and Mine Action, Centre for International Stabilisation and Recovery. ISSN 2154-1485. Available at: www.maic.jmu.edu/journal/14.2/r_d/crawfard /crawfard.htm |
[35] | Josip Stepanic jr., (2000) Material Characterisation by Point Contact Impact Emmitted Ultrasound, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia. ROMA 2000, 15th WCNDT Available at http://www.ndt.net/article/wncdt00/toc/landw.htm. |
[36] | LANDMARC, (2007) Making Landmine Detection and Removal Practical. Available at http://www-lasers.unl.gov/ lasers/idp/mir/mir.html. |
[37] | Landmine Monitor Report, (2009) StateMaster Encyclopedia. Available at www.statemaster.com/encyclopedia/landmine |
[38] | Lopez P., H. Sahli, D. L. Vilarino, and D. Cabello, (2003) Detection of Perturbations in Thermal IR Signatures: An Inverse Problem for Buried Landmine Detection. Brussels, Belgium. Available at http://www.clearfast.vub.ac.be/ publications_files/Lopez_spie_2003.pdf |
[39] | Lopez P., Sahli, H. and Cabello D., (2003) Detection and classification of landmines from infrared images. Brussels, Belgium. Available at http://www.clearfast.vub.ac.be/publications_files/Lopez_Eudem2scot_2003.pdf |
[40] | MacDonald, J., Lockwood, J. R., J. E., Altshuler, T., Broach, J. T., Carin, L., Harmon, R. S., R. S., Rappaport, C., Scott, W. R., and Weaver, R., (2003) Alternatives for landmine Detection, RAND. Available athttp://www.rand.org/pubs/monograph_reports/MR1608.html |
[41] | Martin Frost (2006), Land mine. Available at: http://www.martinfrost.ws/htmlfiles/may2006/landmine.html |
[42] | Major William C. Schneck (1998) The Origin of Military Mines, Engineer Bulletin. Available at http://www.fas.org/ man/dod-101/sys/land/docs/980700-schneck.htm |
[43] | Mine Fact, (US Department of State) (1998), Hidden Killer, the global landmine crisis, US Department of State Publication 10575. |
[44] | Mira M., E. Valor, R. Boluda, V. Caselles and C. Coll, Influence of the Soil Moisture Effect on the Thermal Infrared Emissivity. Available at http://eng.tethys.cat/files/4tethys -01-eng.pdf |
[45] | Murray S. Korman and James M. Sabatier. (2007) Nonlinear acoustic techniques for land mine detection. Available at http://www.demine.org/SCOT/papers/sabatier.pdf |
[46] | Nenad Gucunski, Vedrana Krstic, and Ali Mahr, (2000) Field Implementation of the Surface Waves for Obsatcle Detection (SWOD) Method, Department of Civil and Environmental Engineering, Rutgers University, 623 Bowser Road, Piscataway, NJ 08854, USA ROMA, 15th WCNDT Available at http://www.ndt.net/article/wncdt00/toc/landw. htm |
[47] | Nguyen Trung Thanh, Hichem Sahli, and Dinh Nho Hao, (2007) Finite-Difference methods and validity of a thermal model for landmine detection, IEEE Transactions on geoscience and remote sensing, Vol. 45, No 3. |
[48] | Nguyen Trung Thanh. (2007) Infrared thermography for the detection and characterization of buried object. Uitgeverij VUBPRESS Brussels University Press, ISBN 978 90 5487 434 8. |
[49] | Olowofela J. A, Akinyemi O. D., Bello R. and Alabi A. A. (2010), Effect of Depth on the Thermal Signature of Buried Metallic Object. Journal of Earth Science India, Vol. 3 (II), pp 89-96, ISSN: 0974-8350. Available athttp://www.earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1305.pdf |
[50] | Pregowski P. , W. Swiderski , R. T. Walczak, K. Lamorski, (2000) Buried Mine and Soil Temperature Prediction by Numerical Model. ROMA 2000, 15th WCNDT Available at http://www.ndt.net/article/wncdt00/toc/landw.htm |
[51] | Roger L. Roy and Shaye K. Friensen (1999) Historical use of anti-personnel landmine: Impact on land force operations, Department of National Defence Canada. Available at http://213.162.22.164/fileadmin/pdf/review_conference/regional_conference/amman/Historical_uses_study.pdf |
[52] | Remke L. Van Dam, Harrison J. B. J., Hendrickx J. M. H., Brian Borchers, Ryan E. North, Janet E. Simms, Chris Jasper, Christopher W. Smith, Yaoguo Li. (2005) Variability of magnetic soil properties in Hawaii. Available at http://www.ees.nmt.edu/Hydro/landmine/pub/spie2005_FeO_hawaii.pdf |
[53] | Remke L. Van Dam, Jan M. H. Hendrickx, Harrison J. B. J., Brian Borchers. (2005) Conceptual model for prediction of magnetic properties in tropical soils. Available at http://www.ees.nmt.edu/Hydro/landmine/pub/spie2005_FeO_model.pdf |
[54] | Remke L. Van Dam, Brian Borchers and Jan M. H. Hendrickx, (2005) Strength of landmine signatures under different soil conditions: implications for sensor fusion. (International Journal of System Science, 2005). Available at http://infohost.nmt.edu/~borchers/IJSS.pdf |
[55] | Remke L. Van Dam, Brian Borchers, Jan M. H. Hendrickx, and Sung-ho Hong, (2003) Soil Effects on Thermal Signatures of Buried Non-Metallic Landmines. Available at http://www.ees.nmt.edu/Hydro/landmine/pub/spie2003_thermal.pdf |
[56] | Remke L. Van Dam R., Borchers B. Hendrickx J. M.H., Harmon R. S. (2003), Effects of soil water content and texture on radar and infrared landmine sensors: implications for sensor fusion. Available at www.ees.nmt.edu/Hydro/ landmine/pub/endem2003.pdf |
[57] | Remke L. Van Dam , Brian Borchers, Jan M. H. Hendrickx, and Sung-ho Hong, (2007) Controlled field experiments of wind effects on thermal signatures of buried and surface-laid land mines. New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA. Available at www.ees.nmt.edu/hydro/ landmine |
[58] | Remke L. Van Dam, J. Harrison, Jam M. H. Hendrickx, Deidre A. Hirschfeld, Ryan E. North, Janet E. Simms, Yaoguo Li.(2005) Mineralogy of magnetic soils at a UXO radiation site in Kaho’olawe Hawall Available at http://www.ees.nmt.edu/Hydro/landmine/pub/sageep2005_kahoolawe.pdf |
[59] | Remke L. Van Dam, Jan M. H. Hendrickx, and Brian Borchers (2004). Environmental effects on landmines and UXO detection sensors Available at www.ees.nmt.edu/Hydro /landmine/pub/fasttimes2005_landmines.pdf |
[60] | Rutherford K. R. (2000), The Evolving Arms Control Agenda: Implications of the Role of NGOS in Banning Antipersonnel Landmines. Available at: www.jstor.org/stable/25054137 |
[61] | Sanjib Ghoshal (2007), Reliability Improvement of the Process Heaters through Infrared Thermography. Available at www.goinfrared.com/media/2007/2007-032Ghoshal.pdf |
[62] | Santulli Carlo. (2009) IR Thermography for the Detection of Buried Objects: A Short Review. Available at www.ndt.net/ article/v12n12/santulli.pdf |
[63] | Shannon R. Heather, John M. Sigda, Remke L. Van Dam, Jan M. H. Hendrickx and Virginia T. Mclemore (2005), Thermal Camera Imaging of Rock Piles at the Questa Molybdenum Mine. Available at www.dept.ca.uky.eduasmr/W/full%20 papers%202005/1015-shannon-NM.pdf |
[64] | Simunek J., J. M. H. Hendrickx, and B. Borchers, (2001) Modeling Transient Temperature Distributions around Landmines in Homogeneous Bare Soils, Proc. of SPIE Vol. 4394:387-388. |
[65] | Smits M. Kathleem, Toshihiro Sakaki, Anuchit Limsuwat and Tissa H. Illangasekare, (2009) Detection of the Thermal Conductivity of Sands under Varying Moisture, Drainage/Wetting, and Porosity Conditions – Applications in Near-Surface Soil Moisture Distribution Analysis. Available athttp://hydrologydays.colostate.edu/papers_2009/smits_paper.pdf |
[66] | Snedecor, George W. and Cochran, William G. (1989) Statistical Methods, Eighth Edition, Iowa State University Press. |
[67] | Surah Rennie and Alan Brandit. (2002) An expert approach for predicting mine burial. Fifth International Symposium on Technology and the mine pronlem, NPS, Monterey, April 21 – 25. |
[68] | Sung-ho Hong, Tim Miller, Harold Tobin, Brian Borchers, and Jan M. H. Hendrickx, (2002) Landmine detection in bare soils using thermal infrared sensors. New Mexico Tech, Socorro, NM 87801 Available at www.ees.nmt.edu/ Hydro/landmine/pub/spie2002_gpr_thermal.pdf |
[69] | Sung-ho Hong, Tim Miller, Harold Tobin, Brian Borchers, and Jan M. H. Hendrickx, (2001) Impact of soil water content on landmine detection using radar and thermal infrared sensors. New Mexico Tech, Socorro, NM 87801 (hendrick@nmt.edu), Henk Lensen and Piet Schwering TNO-FEL, The Hague, The Netherlands and Brian Baertlein, The Ohio State University, Columbus OH. Available at www.ees.nmt.edu/Hydro/landmine/pub/spie2001_gpr_thermal.pdf |
[70] | US Army Corps of Engineers, (2004) Phenomenon models for landscape signatures: Review and recommendations. Available at http://handle.dtic.mil/100.2/ADA424543 |
[71] | Vavilov V. P. and A. G. Klimov (2002), Studying the Phenomena Related to the IR Thermographic Detection of Buried Landmines. Available atwww.qirt.org/archives/qirt2002/papers/005.pdf |
[72] | Victor Bom, A. M. Osma, and A. M. Abdel Monem (2008), A Novel Scanning Landmine Detector Based on the Technique of Neutron Back Scattering Imaging. IEEE Transactions on Nuclear Science, Vol. 55 No. 2. |
[73] | Vietnam Veterans of America Foundation, (2007) Anti-personnel Land Mines – the eternal sentinels, 1347, Upper Dummerston Road, Brattleboro, VT 05301. Available at http://www.thirdworldtraveler.com/Life_Death_third World/landmines.html |
[74] | Vjera Krstelj, (2000) Reliability of antipersonnel landmines detection. Faculty of Mechanical Engineering & Naval Architecture, University of Zagreb, Croatia. ROMA 2000, 15th WCNDT Available at http://www.ndt.net/article /wncdt00/toc/landw.htm |
[75] | Waschl J. A. (1994). A Review of Landmine Detection. Available at: http://dspace.dsto.defence.gov.au/dspace/ bitstream/1947/3907/1/DSTO-TR-0113%20PR.pdf |
[76] | Wehlburg J. C., J. Jacobs, S. L. Shope, G. J. Lockwood and M. M. Selph, (2007) Landmine detection using backscattered X-ray radiography, Sandia National Laboratories, MS 0980, Albuquerque, NM 87185. Available at http://www.osti.gov/ bridge/servlets/purl/9016hT378M/webviewable/9016.pdf |
[77] | Wilhelmus A. C. M. Messelnk, Klamer Schutte, Albert M. Vossepoel, Frank Cremer, John G. M. Schavemaker, Eric den Breejen. (2002) Future-based detection of landmines in infrared images. Reprint proc. SPIE Vol. 4742, Det. And Rem. Tech. for mine and minelike targets VII, Orlando FL, USA. |
[78] | William C. Schneck, (1998) The Origin of Military Mines: Part 1. Available at: http://www.fas.org/man/dod-101/ sys/land/docs/980700-schneck.htm |
[79] | Raluce Plesu, Gabriel Teodoriu and George Taranu (2012). Infrared Thermography Applications for Building Investigations. Buletinul Institutului Politehnic Din Iasi, t. LVIII (LXII), F.1, 2012. Available at: www.ce.tuiasi.ro/~bipcons/Archive/287.pdf |
[80] | Annamalai Manickavasagan, Digvir S. Jayas, Noel D.G. White, Jitendra Paliwal (2005). Applications of Thermal Imaging in Agriculture – A Review. Paper presentated at the CSAE/SCGR 2005 Meeting Winnipeg, Manitoba |
[81] | Sun, X.Z., J.B. Litchfield and S.J. Schmidt. 1993. Temperature mapping in a model food gel using magnetic resonance imaging. Journal of Food Science 58:168-172, 181. |
[82] | Sun, X.Z., S.J. Schmidt and J.B. Litchfield. 1994. Temperature mapping in a potato using half fourier transform MRI of diffusion. Journal of Food Process Engineering 17:423-437. |