[1] | Xu, B. and Ting, T. (1995). Measuring Structural Characteristics of Fiber Segments in Nonwoven Fabrics. Textile Research Journal, 65: 41-48. |
[2] | Lin, H., Lin. X., Hong, Z., and Lei, H. C. (2003). Effect of Fiber Arrangement on the Mechanical Properties of Thermally Bonded Nonwoven Fabrics. Textile Research Journal, 69: 917-920. |
[3] | Mohammadi, M. and Lee-Banks, P. (2002). Air Permeability of Multilayered Nonwoven Fabrics. Textile Research Journal, 32: 613-711. |
[4] | Mohammadi, M and Lee-Banks, P. (2003). Determining Effective Thermal Conductivity of Multilayered Nonwoven Fabrics. Textile Research Journal, 79: 802-808. |
[5] | Woo, S.S., Shalev, I. and Barker, L.R. (1994). Heat and Moisture Through Nonwoven Fabrics (Part 2 Moisture Diffusivity). Textile Research Journal, 32: 190-197. |
[6] | Tascant, M. and Vaughn, A.E. (2008). Effect of Total Surface Area and Fabric Density on Acoustical Behaviour of Needle Punch Nonwoven Fabric. Textile Research Journal, 78: 289-296. |
[7] | Huang, X.C., and Bresee, R.R., (1993). Characterizing Nonwoven Web Structure Using Image Analysis Techniques, Part II: Fiber Orientation Analysis in Thin Webs, INDA. Journal of Nonwoven Research, 2: 14-21. |
[8] | Hearle, J. W. S., and Stevenson, P. J., (1963). Nonwoven Fabric Studies, Part III: The Anisotropy of Nonwoven Fabrics, Textile Research Journal, 33: 877-888. |
[9] | Muller, D., (1989). Random orientation in case of card nonwoven, Edana’s 1989 U.K. Nonwoven Symposium, 17-36. |
[10] | Pourdeyhimi, B., Ramanathan, R., and Dent, R., (1996). Measuring Fibre Orientation in Nonwovens, Part I: Simulation, Textile Research Journal, 66: 713-722. |
[11] | Watanabe, A., Mila, M., Takeno, Y., Yokoi, T., & Nakayama, A., (1996). Fatigue Behavior of Aramid Nonwoven Fabrics Under Hot Pres Condition, Part III: Effect of Fabric Structure on Compressive Behaviors, Textile Research Journal, 66: 669-676. |
[12] | Hillel, A., (1980). Fundamentals of Soil, Physics, Academic Press, NY. |
[13] | Scheidegger, A.E., (1960). The Physics of Flow through Porous Media, University of Toronto, Toronto, Canada. |
[14] | Piekaar, H.W., and Clarenburg, L.A., (1967). Aerosol Filters— The Tortuosity Factor in Fibrous Filters, Chemical Engineering Science, 22: 1817-1827. |
[15] | Piekaar, H.W., and Clarenburg. L.A., (1968). Theory of the Pressure Drop Across Single Component Glass Fiber Filters, Chemical Engineering Science, 23: 765-771. |
[16] | Martin, J.R., and Lamb, G.E. R., (1987). Measurement of Thermal Conductivity of Nonwovens Using a Dynamic Method, Textile Research Journal, 57: 721-727. |
[17] | Ozisik , M.N., (1985). Heat Transfer, A Basic Approach," McGraw-Hill, NY. |
[18] | Bapat, S.L., Narayankhedkar, K.G., and Lukose, T.P., (1990). Investigations of Multilayer Insulation, C ryogenics , 30: 711-719. |
[19] | Holcombe, B., The Thermal Insulation Performance of Textile Fabrics, C.S.I.R.O. Division of Textile Physics, 338 Blaxland Road, Ryde, N. S. W. 2112, Australia. |
[20] | Hust, J.G., Filia, B.J., Hurley, J.A., & Smith, D.R., (1990). An Automated High Temperature Guarded-Hot-Plate Apparatus for Measuring Apparent Thermal Conductivity of Insulations Between 300 and 700 & deg K, Insulation Materials Testing and Application, ASTM STP 1030, McElroy and Kimpflen, Eds., American Society for Testing and Materials, Philadelphia, 710-722, |
[21] | Kourtides, D.A., Pitts, W.C., Araujo, M., & Zimmerman, R.S., (1988). High Temperature of Ceramic Fibers and Insulations for Thermal Protection of Atmospheric Entry and Hypersonic Cruise Vehicles, SAMPE Quart., 19 (3): 8-19. |