[1] | D. Saravanan et al Spider Silk – Structure, Properties and Spinning, ,Journal of Textile and Apparel ,Technology and Management , Vol. 5, Issue 1, Winter 2006, 67-73. |
[2] | Fritz Vollratha, Strength and structure of spiders’ silks, Reviews in Molecular Biotechnology 742000.67] 83 Review article. |
[3] | Spider’s silk: Investigation of spinning process, web material and its properties, Rohit S. Gole and Prateek Kumar Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, India. |
[4] | Riekel et al, Spider silk fibre extrusion: combined wide & small angle X- ray microdiffraction experiments,C. Riekel et al, International Journal of Biological Macromolecules, 29 (2001) 203-210. |
[5] | Lukas Eisoldt, John G. Hardy, Markus Heim, Thomas R. Scheibel The role of salt and shear on the storage and assembly of spider silk proteins, Journal of Structural Biology (2010) Article in press. |
[6] | Fritz Vollrath et al, Liquid crystalline spinning of Spider Silk, Nature, Vol. 410 (2001) 44-51. |
[7] | Osnat et al, Spider & Mulberry silkworm silks as compatible biomaterials, Composites, Part B 38 (2007) 324-337. |
[8] | J. Pe´rez-Rigueiro, M. Elices, G.V. Guinea Controlled supercontraction tailors the tensile behaviour of spider silk Polymer 44 (2003) 3733–3736. |
[9] | Rammensee et al. Assembly mechanism of recombinant spider silk proteins PNAS, May 6 vol.105, (2008) no.18 6593. |
[10] | Agapov, I., Pustovalova, O. L., Moisenovich, M. M., Bogush, V. G., Sokolova, O. S., Sevastyanov, V. I., et al. Three-dimensional scaffold made from recombinant spider silk protein for tissue engineering. Dokl Biochem Biophys, 426, (2009) 127-130. |
[11] | Allmeling, C., Jokuszies, A., Reimers, K., Kall, S., & Vogt, P. M., Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med, 10(3), (2006) 770-777. |
[12] | Bini, E., Foo, C. W., Huang, J., Karageorgiou, V., Kitchel, B., & Kaplan, D. L., RGDfunctionalized bioengineered spider dragline silk biomaterial. Biomacromolecules, 7(11), (2006) 3139-3145. |
[13] | Ando, Y., Okano, R., Nishida, K., Miyata, S., & Fukade, E., Piezoelectric and related properties of hydrated silk fibroin. Rep Prog Polymer Physics Japan, 23, (1980) 775-778. |
[14] | Casem, M. L., Turner, D., & Houchin, K., Protein and amino acid composition of silks from the cob weaver, Latrodectus hesperus (black widow). Int. J. Biol. Macromol., 24(2-3), (1999) 103-108. |
[15] | Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., Knight, S., Self-assembly of spider silk proteins is controlled by a pHsensitive relay. Nature, 465(7295), (2010) 236-238. |
[16] | Ayoub, N. A., Garb, J. E., Tinghitella, R. M., Collin, M. A., & Hayashi, C. Y., Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE, 2, (2007) e514-e519. |
[17] | Blasingame, E., Tuton-Blasingame, T., Larkin, L., Falick, A. M., Zhao, L., Fong, J., Vaidyanathan, V., Visperas, A., Geurts, P., Xu, X., La Mattina, C., & Vierra, C., Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem, 284(42), (2009) 29097-29108. |
[18] | Brooks, A. E., Nelson, S. R., Jones, J. A., Koenig, C., Hinman, M., Stricker, S., & Lewis, R., Distinct contributions of model MaSp1 and MaSp2 like peptides to the mechanical properties of synthetic major ampullate silk fibers as revealed in silico. Nanotechnol Sci Appl, 1, (2008) 9-16. |
[19] | Dicko, C., Vollrath, F., & Kenney, J. M., Spider silk protein refolding is controlled by changing pH. Biomacromolecules, 5(3), (2004) 704-710. |
[20] | Du, N., Liu, X. Y., Narayanan, J., Li, L., Lim, M. L., & Li, D., Design of superior spider silk: from nanostructure to mechanical properties. Biophys J, 91(12), (2006) 4528-4535. |
[21] | Fahnestock, S. R., & Bedzyk, L. A., Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol., 47(1), (1997) 33-39. |
[22] | Casem, M. L., Tran, L. P., & Moore, A. M., Ultrastructure of the major ampullate gland of the black widow spider, Latrodectus hesperus. Tissue Cell, 34(6), (2002) 427-436. |
[23] | Foelix, R., Biology of spiders. New York: Oxford University Press, Ed. I (1996). |
[24] | Hu, X., Lawrence, B., Kohler, K., Falick, A. M., Moore, A. M., McMullen, E., Jones, P., Vierra, C., Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry, 44(30), (2005) 10020-10027. |
[25] | Chen, X., Knight, D. P., & Vollrath, F., Rheological characterization of Nephila spidroin solution. Biomacromolecules, 3(4), (2002) 644-648. |
[26] | Craig, C. L., Riekel, C., Herberstein, M. E., Weber, R. S., Kaplan, D., & Pierce, N. E., Evidence for diet effects on the composition of silk proteins produced by spiders. Mol. Biol. Evol., 17(12), (2000) 1904-1913. |
[27] | Hu, X., Vasanthavada, K., Kohler, K., McNary, S., Moore, A. M., & Vierra, C. A., Molecular mechanisms of spider silk. Cell Mol Life Sci, 63(17), (2006a) 1986-1999. |
[28] | Hu, X., Kohler, K., Falick, A. M., Moore, A. M., Jones, P. R., & Vierra, C., Spider egg case core fibers: trimeric complexes assembled from TuSp1, ECP-1, and ECP-2. Biochemistry, 45(11), (2006b) 3506-3516. |
[29] | Huemmerich, D., Helsen, C. W., Quedzuweit, S., Oschmann, J., Rudolph, R., & Scheibel, T., Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry, 43(42), (2008) 13604-13612. |
[30] | Hu, X., Yuan, J., Wang, X., Vasanthavada, K., Falick, A. M., Jones, P. R., La Mattina, C. & Vierra, C., Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry, 46(11), (2007) 3294-3303. |