Frontiers in Science
2012; 2(4): 76-85
doi: 10.5923/j.fs.20120204.04
E A. Gomaa , K. M. Ibrahim , N. M. Hassan
Chemistry Department, Faculty of Science, Mansoura University, 35516 , Mansoura, Egypt
Correspondence to: E A. Gomaa , Chemistry Department, Faculty of Science, Mansoura University, 35516 , Mansoura, Egypt.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The association constant ,formation constants and Gibbs free energies are calculated from the conductometric titration curves of CuCl2 with 2-hydroxyimino-3-(2’-hydazonopyridyl)-butane (HL) in absolute ethanol at different temperatures( 293.15 K , 298.15 K , 303.15 K and 308.15 k). On drawing the relation between molar conductance and the ratio of metal to ligand concentrations, different lines are obtained indicating the formation of 1:2 , 1:1 and 2:1 (M:L) stoichiometric complexes. The formation constants of different complexes in absolute ethanol follow the order: Kf (2:1) > Kf (1:1) > Kf (1:2) for (M: L). As the temperature increases, the formation constants and association constants of different complexes increase. The enthalpy and entropy of formation and association of CuCl2 with HL were also estimated and their values were also discussed. The solvation free energies (∆Gs) ,Enthalpy changes of solvation (∆Hs)and the entropy of salvation (∆Ss) were also calculated from solubility measurements for 2-hydroxyimino-3-(2- hydrazonopyridyl)-butane (HL) at different temperatures (293.15 K,298.15 K,303.15 K and 308.15 K).
Keywords: Association Constants, Formation, Gibbs Free Energies, Solvation Free Energies, Enthalpy Changes of Solvation
![]() | Scheme. (1). The outline of the synthesis of 2-hydroxyimino-3-(2'-hydrazonopyridyl)-butane (HL) |
![]() | (1) , |
![]() | Figure (1). The relation between molar conductance (and\m) and (Cm½) of CuCl2 alone in absolute ethanol at different temperatures (293.15K, 298.15 K, 303.15 K and 308.15 K) |
![]() | Figure (2). The relation between molar conductance (/\m) and (Cm½) of CuCl2 in presence of HL in absolute ethanol at different temperatures (293.15K, 298.15 K, 303.15 K and 308.15 K) |
![]() | Figure (3). The relation between /\m and M/L (CuCl2-HL) at 293.15 K |
![]() | Figure (4). The relation between/\m and M/L (CuCl2-HL) at 298.15 K |
![]() | Figure (5). The relation between /\m and M/L(CuCl2-HL) at 303.15 K |
![]() | Figure (6). The relation between /\m and M/L (CuCl2-HL) at 308.15K |
![]() | (2) , |
![]() | (3) |
![]() | (4) |
|
|
![]() | (5) |
![]() | (6) |
![]() | (7) |
![]() | (8) |
![]() | (9) |
|
![]() | Figure (7). The relation between (log KA) and (1/T) |
|
![]() | Figure (8). The relation between (log Kf) and (1/T) |
|
![]() | Figure (9). The relation of (log /\0) and 1/T |
|
![]() | Figure (10). Variation of the molal solubility (S) of HL with the mole fraction (Xs) of EtOH at different temperatures |
|
![]() | (10) . |
![]() | (11) |
[1] | S.M Emam, F.A. El-Saied, S.A. Abou El-Enein, H.A. El-Shater, Spectrochim. Acta Part A 72 (2009) 291–297. |
[2] | A.R. Yaul, V.V. Dhande, A.S. Aswar, Rev. Roum. Chim. 55 (2010) 537–542. |
[3] | A.S. El-Tabl, F.A. El-Saied,W. Plass, A.N. Al-Hakim, Spectrochim. Acta Part A 71 (2008) 90–99. |
[4] | Y. Li, Z.-Y. Yang, M.-F.Wang, J. Fluoresc. 20 (2010) 891–905. |
[5] | S.B. Desai, P.B. Desai, K.R. Desai, Heterocycl. Commun. 7 (2001) 83–90. |
[6] | M.S. Niasari, A. Amiri, Appl. Catal. A 290 (2005) 46–53. |
[7] | M.C.R. Arguelles,M.B. Ferrari, F. Bisceglie, C. Plizzi, G. Pelosi, S. Pinelli,M. Sassi, J. Inorg. Biochem. 98 (2004) 313–321. |
[8] | P. Yogeeswari, N.Menon, A. Semwal,M. Arjun, D. Sriram, Eur. J.Med. Chem. 46 (2011) 2964–2970 |
[9] | M.V. Angelusiu, S.F. Barbuceanu, C. Draghici, G.L. Almajan, Eur. J. Med. Chem. 45 (2010) 2055–2062,F. W C Vosburg and G R Cooper, J.Am. Chem. Soc., 1941, 63, 437. |
[10] | L. Canali, D.C. Sherrington, Chem. Soc. Rev. 28 (1999) 85–93. |
[11] | G.J. Kim, J.H. Shin, Catal. Lett. 63 (1999) 83–89. |
[12] | T. Katsuki, Coord. Chem. Rev. 140 (1995) 189–214. |
[13] | K.J. O’Connor, S.J.Wey, C.J. Burrows, Tetrahedron Lett. 33 (1992) 1001–1004. |
[14] | M.J. Samide, D.G. Peters, J. Electroanal. Chem. 443 (1998) 95–102. |
[15] | Losada, I. Del Peso, L. Beyer, Inorg. Chim. Acta 321 (2001) 107–115. |
[16] | Zhibo Yang, , Ph.D. thesis, Wayne State University, Detroit, Michigan, USA., 2005. |
[17] | Kamal M.Ibrahim, Magdy M.Bekhit and Gaber M.Abu EL-Reash (1991) Transition Met .Chem, 16,189-192. |
[18] | W. Gryzybkowski, and R Pastewski,. (1980) Electrochimica Acta 25, 279 |
[19] | N.A El-Shishtawi, , M.A Hamada,. and E.A. Gomaa, (2010) J. Chem. Eng. Data 55, 5422 |
[20] | M.A. Hamada, , N.A El-Shishtawi, . and E.A. Gomaa, , (2009), South . Braz . J.Chem. 17, 33 |
[21] | E.A. Gomaa, (1987) Thermochimica Acta 120, 183 |
[22] | E.A. Gomaa , (1988) Thermochimica Acta 128, 99 |
[23] | F.I. El-Doussoki, (2008) Journal of Molecular Liquids 142, 53 |
[24] | Farid I. El-Doussoki, , Journal of Molecular Liquids, vol.142, pp.53-56, 2008. |
[25] | M., Rahmi-Nasrabadi, F.Ahmedi, , S.M., Pourmor-tazari, M.R. Ganjal, and K Alizadeh,. (2009) Journal of Molecular Liquids 144, 97 |
[26] | P.W. Atkins, (1978), Physical Chemistry, Oxford University Press. |
[27] | C. Burgdorff, T. Kircher, Photo physical properties of tetracene derivatives in solution, Spectrochim. Acta part A, 44, 11 (1988), 1137–1141. |