[1] | J.C. Maxwell, On the dynamical theory of gases, Philosophical Transactions of the Royal Society London A157 (1866) 26-78. |
[2] | K.R. Rajagopal, A.R. Srinivasa, A thermodynamic framework for rate type fluid models, Journal of Non-Newtonian Fluid Mechanics 88 (2000) 207-227. |
[3] | D.R. Bland, Theory of Linear Viscoelasticity, Pergammon Press, Oxford, 1960. |
[4] | J.D. Ferry, Viscoelastic Properties of Polymers, third ed., John Wiley & Sons, New York, 1980. |
[5] | I.J. Rao, K.R. Rajagopal, On a new interpretation of the classical Maxwell model, Mechanics Research Communications 34 (2007) 509-514. |
[6] | R.G. Larson, S.J.Muller, E.S.G. Shaqfeh, The effect of fluid rheology on the elastic Taylor–Couette instability, J.Non-Newt.Fluid Mech. 51 (1994) 195-225. |
[7] | R.A. Keiller, Numerical instability of time-dependent flows, J. Non-Newt. Fluid Mech. 43 (1992) 229-246. |
[8] | V.A. Gorodtsov, A.I. Leonov, On a linear instability of a plane parallel Couette flow of viscoelastic fluid, J. Appl. Math.Mech. 31 (1967) 310-319. |
[9] | J. Málek, K.R. Rajagopal, A thermodynamic framework for a mixture of two liquids.Nonlinear Anal.-Real World Appl. 9 (2008), 1649-1660. |
[10] | C.W. Macosko. Rheology: Principles, Measurements, and Applications. Wiley-VCH, NewYork, USA, 1994. |
[11] | A. C. Pipkin, T. G. Rooers, A nonlinear integral representation for viscoelastic behaviour, J. Mech. Phys. Solids 16 (1968) 59-63 |
[12] | J. Ghanouchi, H. Labiadh and K. Boubaker, An attempt to solve the heat transfert equation in a model of pyrolysis spray using 4q-order m-Boubaker polynomials Int. J. of Heat and Technology, 26 (2008) 49-53 |
[13] | S. Slama, M. Bouhafs and K. B. Ben Mahmoud,A Boubaker Polynomials Solution to Heat Equation for Monitoring A3 Point Evolution During Resistance Spot Welding, International J. of Heat and Techn., 2008, 26(2), 141-146. |
[14] | T. Ghrib, K. Boubaker and M. Bouhafs, Investigation of thermal diffusivity-microhardness correlation extended to surface-nitrured steel using Boubaker polynomials expansion, Modern Physics Letters B, 22(2008) 2893-2907 |
[15] | S. Fridjine, K.B. Ben Mahmoud, M. Amlouk, M. Bouhafs, A study of sulfur/selenium substitution effects on physical and mechanical properties of vacuum-grown ZnS1−xSex compounds using Boubaker polynomials expansion scheme (BPES),J. of Alloys and Comp., 479 (2009) (1-2), 457-461 |
[16] | C. Khélia, K. Boubaker, T. Ben Nasrallah, M. Amlouk, S. Belgacem, Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion, Journal of Alloys and Compounds, 477 (2009) (1-2), 461-467 |
[17] | S. Tabatabaei, T. Zhao, , O. Awojoyogbe, F. Moses, Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme, Int.J. Heat Mass Transfer, 45 (2009) 1247-1255. |
[18] | A. Belhadj, O. Onyango, N. Rozibaeva, Boubaker Polynomials Expansion Scheme-Related Heat Transfer Investigation Inside Keyhole Model , J. Thermophys. Heat Transf., 23 (2009) 639-642. |
[19] | P. Barry, A. Hennessy, Meixner-Type results for Riordan arrays and associated integer sequences, section 6: The Boubaker polynomials, J. of Integer Seq., 13 (2010) 1-34. |
[20] | M. Benhaliliba, Benouis, C.E., Boubaker, K., Amlouk M., Amlouk, A., A New Guide To Thermally Optimized Doped Oxides Monolayer Spray-grown Solar Cells: The Amlouk-boubaker Optothermal Expansivity ψab in the book : Solar Cells - New Aspects and Solutions, Edited by: Leonid A. Kosyachenko,[ISBN 978-953-307-761-1], (2011) 27-41. |
[21] | H. Rahmanov, A Solution to the non Linear Korteweg-De-Vries Equation in the Particular Case Dispersion-Adsorption Problem in Porous Media Using the (BPES), Studies in Nonlinear Sciences, 2 (1) (2011) 46-49. |
[22] | A.Schmidt, L.Gaul, FE implementation of viscoelastic constitutive stress-strain relations involving fractional time derivatives. In: Constitutive Models for Rubber II. A.A. Balkema Publishers, Tokyo, 2001, 79-89. |
[23] | A.Schmidt, L.Gaul, On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems. Signal Processing 86(10), 2006, pp. 2592–2601. |
[24] | K. B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York and London, 1974. |
[25] | J. Padovan, Computational algorithms for FE formulations involving fractional oper., Comp. Mech.2(1987) 271-287. |
[26] | S. J. Singh, K. Chatterjee, Galerkin Projections and Finite Elements for Fractional Order Derivatives.Nonlinear Dynamics 45 (1-2) (2006), 183-206. |
[27] | L. Yuan, O. Agrawal, A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives.Journal of Vibration and Acoustics, 124 (2002) 321-324. |
[28] | K.R. Rajagopal, On Implicit constitutive Theories, Applications of Mathematics 28 (2003) 279-319. |
[29] | K.R. Rajagopal, Elasticity of Elasticity, Zeitschrift fur Angewandte Mathematik und Physik (2007). |
[30] | K.R. Rajagopal, A.R. Srinivasa, On the response of non-dissipative solids, Proceedings of the Royal Society A-Mathematical Phys. and Engin. Sci. 463 (2007) 357-367. |
[31] | K.R. Rajagopal, On implicit constitutive theories for fluids, Journal of Fluid Mechanics 550 (2006) 243-249. |
[32] | D. Quemada. Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. The European Physical J. Applied Physics,1(1998)119-127. |
[33] | D. Quemada, Rheological modelling of complex fluids: II. Shear thickening behavior due to shear induced flocculation. The European Physical Journal Applied Physics, 2 (1998) 175-181 doi:10.1051/epjap:1998170. |
[34] | D. Quemada, Rheological modeling of complex fluids: III. Dilatant behavior of stabilized suspensions. The European Physical J. Applied Physics, 3 (1998), 309-320 D. Quemada, Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. The European Physical J. Applied Physics, 5 (1999) 191-207. |
[35] | H. Marzougui, H. Saadouli, H. Khlifi and T. Lili, Numerical simulation of compressible turbulent flow using algebraic Reynolds stress model. The European Physical Journal Applied Physics, 35 , (2006) 69-74 |
[36] | C. Bachelet, Ph. Dantan, P. Flaud Indirect on-line determination of the rheological behavior of a power law fluid based on numerical flow simulations. The European Physical Journal Applied Physics, 25 , (2004), 209-217. |