[1] | Braicu, N. Mehterov, B. Vladimirov, V. Sara, Seminars in Cancer Biology Nutrigenomics in cancer: Revisiting the e ff ects of natural compounds. 2017, 46, 84–106. |
[2] | J.A. Conde-Hernandez, Liliana A Espinosa-Victoria, José R Guerrero-Beltrán, Supercritical extraction of essential oils of Piper auritum and Porophyllum ruderale, J. Supercrit. Fluids. 2017, 127, 97–102. |
[3] | A. El Asbahani, K. Miladi, W. Badri, M. Sala, E.H.A. Addi, H. Casabianca, A. El Mousadik, D. Hartmann, A. Jilale, F.N.R. Renaud, A. Elaissari, C.B. Lyon, Essential oils: From extraction to encapsulation. 2015, 483, 220–243. |
[4] | E.K. Silva, M.A.A. Meireles, Encapsulation of Food Compounds Using Supercritical Technologies: Applications of Supercritical Carbon Dioxide as an Antisolvent, Food Public Heal. 2014, 4, 247–258. |
[5] | S. Clercq, A. Mouahid, P. Gérard, E. Bandens, Investigation of crystallization mechanisms for polymorphic and habit control from the Supercritical Antisolvent process, J. Supercrit Fluids. 2018, 141, 29–38. |
[6] | Meneses, M. A.; Caputo, G.; Scognamiglio, M.; Reverchon, E.; Adami, R. Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction, Journal of Food Engineering. 2015, 163, 45–53. |
[7] | Ávalos, G.; Perez-Urria E. Metabolismo secundario de plantas, Revista Reduca. 2009, 2, 119-145. |
[8] | Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. European Journal of Medicinal Chemistry. 2018, 158, 91-105. |
[9] | Tu, X.-F.; Hu, F.; Thakur, K.; Li, X.-L.; Zhang, Y.-S.; Wuei, Z.-J. Comparison of antibacterial effects and fumigant toxicity of essential oilsextracted from different plants, Ind. Crops Prod. 2018, 124,192–200. |
[10] | Cárdenas, C. Y.; Stashenko, E. E.; Martínez, J. R.; Díaz, O. L.; Muñoz, A.; Vladimir V. Estudio comparativo sobre la capacidad de atrapamiento del catión-radical ABTS+. Por los aceites esenciales de especies aromáticas con alto contenido de trans-ANETOL Y ESTRAGOL. Scientia Et Technica, año XII. 2007,33, 117-120. |
[11] | F. Yi, J. Sun, X. Bao, B. Ma, S. Min;, Influence of molecular distillation on antioxidant and antimicrobialactivities of rose essential oils, LWT - Food Sci. Technol. 2019, 102, 310–316. |
[12] | Gava, A. J.; Bento Da Silva, C. A.; Gava Frias, J. R. Tecnologia de alimentos. 1. ed. são pablo: NBL, 2009. |
[13] | Munawar, N.; Jamil, H.M.T. The Islamic Perspective Approach on Plant Pigments as Natural Food Colourants, Procedia-Social and Behavioral Sciences. 2014, 121, 193–203. |
[14] | Han, F.; Yang, P.; Wang, H.; Fernandes, I.; Mateus, N.; Yangjie, N. Digestion and absorption of red grape and wine anthocyanins through thegastrointestinal tract, Trends Food Sci. Technol. 2019, 83, 211–224. |
[15] | Abdel-aal, E. S. M.; Hucl, P.; Rabalski, I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chemistry. 2018, 254, 13–19. |
[16] | Loypimai, P.; Moongngarm, A.; Chottanom, P.; Moontree, T. Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innovative Food Science & Emerging Technologies. 2015, 27, 102–110. |
[17] | Ryu, D.; Koh, E. Stability of anthocyanins in bokbunja (Rubus occidentalis L.) under in vitro gastrointestinal digestion, Food Chemistry. 2018, 267, 157–162. |
[18] | Thornton, D.; Barton, L.; Hsu, L. The development of an automated countercurrent chromatography process for isolation of anthocyanins, Journal of Chromatography A. 2018, 1575, 66-71. |
[19] | Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health, Archives of Biochemistry and Biophysics. 2018, 652, 18-26. |
[20] | Patsilinakos, A.; Ragno, R.; Carradori, S.; Petralito, S.; Cesa, S. Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation, Food Chemistry. 2018, 268, 49–56. |
[21] | Silva, M. A.; Albuquerque, T. G.; Alves, R. C.; Oliveira, M. B. P.P.; Costa, H. S. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods?, Trends in Food Science and Technology. 2018. |
[22] | Puentes, C.; Joulia, X.; Vidal, J. P.; Esteban-Decloux, M. Simulation of spirits distillation for a better understanding of volatile aroma compounds behavior: Application to Armagnac production, Food and Bioproducts Processing. 2018, 112, 31–62. |
[23] | Franco, M.; Zerlotti, A. Química e Bioquímica dos Alimentos, 1. ed. Rio Janeiro, Atheneu, 2018. |
[24] | Farhat, A.; Benmoussa, H.; Bachoual, R.; Nasfi, Z.; Elfalleh, W.; Romdhane, M.; Bouajila, J. Efficiency of the optimized microwave assisted extractions on the yield, chemical composition and biological activities of Tunisian Rosmarinus officinalis L. essential oil, Food and Bioproducts Processing. 2017, 105, 224–233. |
[25] | Tekin, K.; Akalin, M. K.; Şeker, M. G. Ultrasound bath-assisted extraction of essential oils from clove using central composite design, Industrial Crops and Products. 2015, 77, 954–960. |
[26] | Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A. Terpene degradation and extraction from basil and oregano leaves using subcritical water, Journal of Chromatography A. 2007, 1152, 262–267. |
[27] | Moura, L.; Carvalho, R. N.; Stefanini, M. B: Ming, L. C.; Meireles, M. A. A. Supercritical fluid extraction from fennel (Foeniculum vulgare): Global yield, composition and kinetic data, Journal of Supercritical Fluids. 2005, 35, 212–219. |
[28] | P. Henrique, R. Jesus, Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais, Química Nova. Soc. Bras. Química. 2008, 31, 1218–1223. |
[29] | Janiszewska-Turak, E. Carotenoids microencapsulation by spray drying method and supercritical micronization, Food Research International. 2017, 99, 891–901. |
[30] | Jean W, T.; Debenedetti G, P. Particle Formation with Supercritical Fluids: A Review, Engineering, Chemical. 1991, 22, 555–584. |
[31] | Sang-Do, Y.; Erdogan, K. Formation of polymer particles with supercritical fluids: A review, Journal of Supercritical Fluids. 2005, 34, 287–308. |
[32] | Brunner, G. Supercritical fluids: Technology and application to food processing, Journal of Food Engineering. 2005, 67, 21–33. |
[33] | Djas, M.; Henczka, M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: A review, Separation and Purification Technology. 2018, 201, 106–119. |
[34] | Fahim, T. K.; Zaidul, I. S.M.; Abu Bakar, M. R.; Salim, U. M.; Awang, M. B.; Sahena, F.; Jalal, K. C.A.; Sharif, K. M.; Sohrab, M. H. Particle formation and micronization using non-conventional techniques- review, Chemical Engineering and Processing: Process Intensification.2014, 86, 47–52. |
[35] | Labuschagne, P. W.; Naicker, B.; Kalombo, L. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique, Internatio-nal Journal of Pharmaceutics. 2016, 499, 205–216. |
[36] | E. Marko, M. Leitgeb, M. Primo, Industrial applications of supercritical fl uids: A review.2014, 77, 235–243. |
[37] | M.J. Cocero, Á. Martín, F. Mattea, S. Varona, Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications, J. Supercrit. Fluids. 2009, 47, 546–555. |
[38] | M. S. Gomes, M. T.; T. Santos, D.; A. Meireles, M. A. Trends in Particle Formation of Bioactive Compounds Using Supercritical Fluids and Nanoemulsions, Food and Public Health.2012, 2, 142–152. |
[39] | Villanueva-Bermejo, D.; Zahran, F.; Troconis, D.; Villalva, M.; Reglero, G.; Fornari, T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique, The Journal of Supercritical Fluids. 2017, 120, 52-58. |
[40] | Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms, Journal of Supercritical Fluids. 2018,138, 247–258. |
[41] | Campardelli, R.; Reverchon, E.; Marco, I. De. PVP microparticles precipitation from acetone-ethanol mixtures using SAS process : Effect of phase behavior, The Journal of Supercritical Fluids. 2019,143, 321–329. |
[42] | Matos, R. L.; Lu, T.; McConville, C.; Leeke, G.; Ingram, A. Analysis of curcumin precipitation and coating on lactose by the integrated supercritical antisolvent-fluidized bed process. Journal of Supercritical Fluids. 2018, 141, 143-156. |
[43] | Montes, A.; Williamson, D.; Hanke, F.; Garcia-Casas, I.; Pereya, C.; Martinez De La Ossa, E.; Teipel, U. New insights into the formation of submicron silica particles using CO2 as anti-solvent, The Journal of Supercritical Fluids. 2018,133, 218–224. |
[44] | Neurohr, C.; Erriguible, A.; Laugier, S.; Subra-Paternault. P. Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide, Chemical Engineering Journal.2016, 303, 238-251. |
[45] | Pouretedal, H. R. Preparation and characterization of azithromycin nanodrug using solvent/antisolvent method, International Nano Letters. 2014, 4, 103. |
[46] | Chou, L. H.; Liu, H. L.; Kao, T. H. Effect of micronization process on the functional component content and anti-inflammatory activity of Luffa cylindrical peel, Journal of Functional Foods. 2016, 27,150–159. |
[47] | Zabot, L. Giovani.; Meireles, M. Angela. On-line process for pressurized ethanol extraction of onion peels extract and particle formation using supercritical antisolvent, The Journal of Supercritical Fluids, 2016,110, 230-239. |
[48] | Sang-do, Y.; Kiran, E. Formation of polymer particles with supercritical fluids: A review, Journal of Supercritical Fluids. 2005,34,287–308. |
[49] | E. Kiran, Supercritical fluids and polymers – The year in review – 2014, J. Supercrit. Fluids. 2016, 110, 126–153. |
[50] | García-Casas, I.; Montes, A.; Pereyra, C.; Martínez De La Ossa, E. J. Co-precipitation of mangiferin with cellulose acetate phthalate by Supercritical antisolvent process, Journal of CO2 Utilization. 2017, 22, 197–207. |
[51] | Prosapio, V.; Reverchon, E.; De Marco, I. Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation, Journal of CO2 Utilization. 2017, 19, 230–237. |
[52] | Prosapio, V.; De Marco, I.; Scognamiglio, M.; Reverchon, E. Folic acid-PVP nanostructured composite microparticles by supercritical antisolvent precipitation, Chemical Engineering Journal. 2015, 277, 286–294. |
[53] | Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms, Journal of Supercritical Fluids. 2018, 138, 247–258. |
[54] | Rossmann, M.; Braeuer, A.; Dowy, S.; Gallinger, T. G.; Leipertz, A.; Schluecker, E. Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process, Journal of Supercritical Fluids. 2012,66,350–358. |
[55] | Campardelli, R.; Reverchon, E.; De Marco, I. Dependence of SAS particle morphologies on the ternary phase equilibria, Journal of Supercritical Fluids. 2017, 130, 273–281. |
[56] | Cardoso, M. A. T.; Monteiro, G. A.¸ Cardoso, J. P.; Prazeres, T. J.V.; Figueiredo, J. M.F.; Martinho, J. M.G.; Cabral, J. M.S.; Palavra, A. M.F. Supercritical antisolvent micronization of minocycline hydrochloride, Journal of Supercritical Fluids. 2008,44, 238–244. |
[57] | Secuianu, C.; Feroiu, V.; Gean, D. Phase behavior for carbon dioxide + ethanol system: Experimental measurements and modeling with a cubic equation of state, The Journal of Supercritical Fluids. 2008, 47, 109–116. |
[58] | Stievano, M.; Elvassore, N. High-pressure density and vapor-liquid equilibrium for the binary systems carbon dioxide-ethanol, carbon dioxide-acetone and carbon dioxide- dichloromethane, Journal of Supercritical Fluids. 2005,33, 7–14. |
[59] | Mejbri, K.; Binous, H.; Bellagi, A. Modeling of the phase behavior of CO2 in water, methanol, ethanol and acetone by different equations of state, Fluid Phase Equilibria.2018, 469, 9–25. |
[60] | De Marco, I.; Reverchon, E. Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization, Journal of Supercritical Fluids.2011, 58, 295–302. |
[61] | Osorio-Tobón, J. F.; Carvalho, P. I. N.; Rostagno, M. A.; Petenate, Ademir J.; Meireles, M. Angela A. Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process, Journal of Supercritical Fluids. 2016, 108, 26–34. |
[62] | De Marco, I.; Rossmann, M.; Prosapio, V.; Reverchon, E.; Braeuer, A. Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP, Chemical Engineering Journal, 2015, 273, 344–352. |
[63] | A. Gokhale, B. Khusid, R.N. Dave, R. Pfeffer, Effect of solvent strength and operating pressure on the formation of submicrometer polymer particles in supercritical microjets, J. Supercrit. Fluids. 2007, 43, 341–356. |
[64] | Petit-Gas, T.; Boutin, O.; Raspo, I.; Badens, E. Role of hydrodynamics in supercritical antisolvent processes. Journal of Supercritical Fluids. 2009, 51, 248–255. |
[65] | Visentin, A.; Rodríguez-Rojo, S.; Navarrete, A.; Maestri, D.; Cocero, M. J. Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process, Journal of Food Engineering. 2012, 109, 9–15. |
[66] | Sosa, M. V.; Rodríguez-rojo, S.; Mattea, F.; Cismondi, M.; Cocero, M. J. Green tea encapsulation by means of high pressure antisolvent coprecipitation, The Journal of Supercritical Fluids. 2011, 56, 304–311. |
[67] | Guamán-Balcázar, M. C.; Montes, A.; Pereyra, C.; de la Ossa, E. Martínez. Precipitation of mango leaves antioxidants by supercritical antisolvent process, Journal of Supercritical Fluids. 2017, 128, 218–226. |
[68] | Villanueva-Bermejo, D.; Zahran, F.; Troconis, D.; Villalva, M.; Reglero, G.; Fornari, T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique, Journal of Supercritical Fluids. 2017, 120, 52–58. |