[1] | Caselato-Sousa, V.M. and J. Amaya-Farfán, State of Knowledge on Amaranth Grain: A Comprehensive Review. Journal of Food Science, 2012. 77(4): p. R93-R104. |
[2] | Guzman-Maldonado, S.H. and O. Paredes-Lopez, Functional products of plants indigenous to Latin America: amaranth, quinoa, common beans, and botanicals., in Functional Foods: Biochemical & Processing Aspects., G. Mazza, Editor. 1998, Tehnomic Publishing Co: Pennsylvania. |
[3] | Amaya-Farfan, J., R. Marcilio, and C.R. Spehar, Deveria o Brasil investir em novos grãos para a sua alimentação? A proposta do amaranto (Amaranthus sp.). Segurança Alimentar e Nutricional, 2005. 12(1): p. 47-56. |
[4] | Menezes, E.W.L., F.M., Marcadores in vivo e in vitro para avaliação de carboidratos. Carbohidratos en Alimentos Regionales Iberoamericanos., ed. F.M.M. Lajolo, E.W. 2006, São Paulo: Editora da Universidade de São Paulo. |
[5] | Tosi, E.A., et al., Dietary fiber obtained from amaranth (Amaranthus cruentus) grain by differential milling. Food Chemistry, 2001. 73(4): p. 441-443. |
[6] | Qureshi, A.A., J.W. Lehmann, and D.M. Peterson, Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J Nutr, 1996. 126(8): p. 1972-8. |
[7] | Shin, D.H., et al., Amaranth squalene reduces serum and liver lipid levels in rat fed a cholesterol diet. British Journal of Biomedical Science, 2004. 61(1): p. 11-14. |
[8] | Berger, A., et al., Cholesterol-lowering properties of amaranth flakes, crude and refined oils in hamsters. Food Chemistry, 2003. 81(1): p. 119-124. |
[9] | Czerwinski, J., et al., Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J Nutr Biochem, 2004. 15(10): p. 622-9. |
[10] | Grajeta, H., Effect of amaranth and oat bran on blood serum and liver lipids in rats depending on the kind of dietary fats. Nahrung, 1999. 43(2): p. 114-7. |
[11] | Plate, A.Y.A. and J.A.G. Areas, Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chemistry, 2002. 76(1): p. 1-6. |
[12] | Chaturvedi, A., G. Sarojini, and N.L. Devi, Hypocholesterolemic effect of amaranth seeds (Amaranthus esculantus). Plant Foods Hum Nutr, 1993. 44(1): p. 63-70. |
[13] | Mendonca, S., et al., Amaranth protein presents cholesterol-lowering effect. Food Chemistry, 2009. 116(3): p. 738-742. |
[14] | Berger, A., et al., Cholesterol-lowering properties of amaranth grain and oil in hamsters. International Journal for Vitamin and Nutrition Research, 2003. 73(1): p. 39-47. |
[15] | Reeves, P.G., F.H. Nielsen, and G.C. Fahey, Ain-93 Purified Diets for Laboratory Rodents - Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the Ain-76a Rodent Diet. Journal of Nutrition, 1993. 123(11): p. 1939-1951. |
[16] | Fossati, P. and L. Prencipe, Serum Triglycerides Determined Colorimetrically with an Enzyme That Produces Hydrogen-Peroxide. Clinical Chemistry, 1982. 28(10): p. 2077-2080. |
[17] | Mcgowan, M.W., et al., A Peroxidase-Coupled Method for the Colorimetric Determination of Serum Triglycerides. Clinical Chemistry, 1983. 29(3): p. 538-542. |
[18] | Anandaraja, S., et al., Low-density lipoprotein cholesterol estimation by a new formula in Indian population. Int J Cardiol, 2005. 102(1): p. 117-20. |
[19] | Scott, A.M., I. Atwater, and E. Rojas, A Method for the Simultaneous Measurement of Insulin Release and B-Cell Membrane-Potential in Single-Mouse Islets of Langerhans. Diabetologia, 1981. 21(5): p. 470-475. |
[20] | Bragagnolo, N. and D. Rodriguez-Amaya, Otimização da determinação de colesterol por clae e teores de colesterol, lipídios totais e ácidos graxos em camarão rosa (Penaeus brasiliensis). Ciência e Tecnologia de Alimentos, 1997. 17: p. 275-280. |
[21] | Guerrant, G.O., M.A. Lambert, and C.W. Moss, Analysis of Short-Chain Acids from Anaerobic-Bacteria by High-Performance Liquid-Chromatography. Journal of Clinical Microbiology, 1982. 16(2): p. 355-360. |
[22] | Canale, A., M.E. Valente, and A. Ciotti, Determination of Volatile Carboxylic-Acids (C1-C5i) and Lactic-Acid in Aqueous Acid-Extracts of Silage by High-Performance Liquid-Chromatography. Journal of the Science of Food and Agriculture, 1984. 35(11): p. 1178-1182. |
[23] | Batta, A.K. and G. Salen, Gas chromatography of bile acids. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1999. 723(1-2): p. 1-16. |
[24] | Batta, A.K., et al., Capillary gas-liquid chromatography of acetate-methyl esters of bile acids. Journal of Chromatography A, 1997. 766(1-2): p. 286-291. |
[25] | Batta, A.K., et al., Highly simplified method for gas-liquid chromatographic quantitation of bile acids and sterols in human stool. Journal of Lipid Research, 1999. 40(6): p. 1148-1154. |
[26] | Brattsand, R., Distribution of cholesterol and triglycerides among lipoprotein fractions in fat-fed rabbits at different levels of serum cholesterol. Atherosclerosis, 1976. 23(1): p. 97-110. |
[27] | Carroll, K.K. and E.M. Kurowska, Soy Consumption and Cholesterol Reduction - Review of Animal and Human Studies. Journal of Nutrition, 1995. 125(3): p. S594-S597. |
[28] | Takao, T., et al., Hypocholesterolemic effect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Science and Technology Research, 2005. 11(2): p. 161-167. |
[29] | Bagchi, K., T. Datta, and R. Ray, Influence of Dietary Protein and Methionine on Serum Cholesterol Level. American Journal of Clinical Nutrition, 1963. 13(4): p. 232-&. |
[30] | Morita, T., et al., Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. Journal of Nutrition, 1997. 127(3): p. 470-477. |
[31] | Drzikova, B., et al., The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro. Food Chemistry, 2005. 90(1-2): p. 181-192. |
[32] | Wong, J.M.W., et al., Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 2006. 40(3): p. 235-243. |
[33] | Maathuis, A., et al., The Effect of the Undigested Fraction of Maize Products on the Activity and Composition of the Microbiota Determined in a Dynamic in Vitro Model of the Human Proximal Large Intestine. Journal of the American College of Nutrition, 2009. 28(6): p. 657-666. |
[34] | Hermes, R.G., et al., Effect of dietary level of protein and fiber on the productive performance and health status of piglets. Journal of Animal Science, 2009. 87(11): p. 3569-3577. |
[35] | Nugent, A.P., Health properties of resistant starch. British Nutrition Foundation Nutrition Bulletin, 2005. 30(1): p. 27-54. |
[36] | Tiengo, A., E.M. Motta, and F.M. Netto, Chemical composition and bile acid binding activity of products obtained from amaranth (Amaranthus cruentus) seeds. Plant Foods Hum Nutr, 2011. 66(4): p. 370-5. |
[37] | Han, K.H., et al., Enzyme-resistant fractions of beans lowered serum cholesterol and increased sterol excretions and hepatic mRNA levels in rats. Lipids, 2003. 38(9): p. 919-24. |
[38] | Capriles, V.D., et al., Effects of processing methods on amaranth starch digestibility and predicted glycemic index. Journal of Food Science, 2008. 73(7): p. H160-H164. |