Food and Public Health
p-ISSN: 2162-9412 e-ISSN: 2162-8440
2012; 2(5): 142-152
doi: 10.5923/j.fph.20120205.05
M. Thereza M. S. Gomes , Diego T. Santos , M. Angela A. Meireles
LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas)
Correspondence to: M. Angela A. Meireles , LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas).
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
This review discusses the recent developments in the application of supercritical fluid technologies for the production of composites or encapsulates of bioactive compounds. Various supercritical particle formation technologies are briefly described, including processes in which the supercritical fluid acts as a solute, solvent, and antisolvent. The main features and mechanisms of antisolvent techniques that contribute to the understanding of the fundamentals of the Supercritical Fluid Extraction of Emulsions (SFEE) process are described. The published literature on SFEE, including the results and perspectives of its application in various industrial fields, are discussed. This article is the first comprehensive review specifically focused on the formation of particles using the SFEE technique.
Keywords: SAS, SFEE, Supercritical, Bioactive Compounds, Novel Processing Techniques
Figure 1. The structures of (a) an encapsulate and (b) a composite |
Figure 2. A schematic diagram of the SFEE apparatus. (A) Counter-current; (B) Co-current; 1, Pump; 2, Heat exchangers; 3, Valves; 4, Precipitation vessel; 5, Flash tank separator |
Figure 3. Diagram of a decision-making tree for the SFEE process |
[1] | Bernard F. Gibbs, Selim Kermasha, Inteaz Alli, Catherine N. Mulligan, Encapsulation in the food industry: a review, Taylor & Francis Group, International Journal of Food Sciences and Nutrition, vol. 50, no.3, pp. 213–224, 1999. |
[2] | Diego T. Santos, M. Angela A. Meireles, Carotenoid pigments encapsulation: fundamentals, techniques and recent trends, Bentham Open, The Open Chemical Engineering Journal, vol.4, pp.42–50, 2010. |
[3] | Ireneo Kikic, Michele Lora, A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS), American Chemical Society, Industrial & Engineering Chemistry Research, vol.36, no.12, pp.5507–5515, 1997. |
[4] | Camila G. Pereira, M. Angela A. Meireles, Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Springer Science, Food and Bioprocess Technology, vol. 3, no.3, pp.340–372, 2010. |
[5] | Kashappa G. H. Desai, Hyun J. Park, Recent developments in microencapsulation of food ingredients, Taylor & Francis Group, Drying Technology, vol.23, no.7, pp.1361–1394, 2005. |
[6] | Claude P. Champagne, Patrick Fustier, Microencapsulation for the improved delivery of bioactive compounds into foods, Science Direct, Current Opinion in Biotechnology, vol.18, no.2, pp.184–190, 2007. |
[7] | Seid M. Jafari, Elham Assadpoor, Yinghe He, Bhesh Bhandari, Encapsulation efficiency of food flavours and oils during spray drying, Taylor & Francis Group Drying Technology, vol. 26, no.7, pp.816–835, 2008. |
[8] | Peter M. M. Schrooyen, Roelof van der Meer, Cornelis G. De Kruif, Microencapsulation: its application in nutrition, Proceedings of the Nutrition Society, vol.60, no.4, pp.475–479, 2001. |
[9] | San S. Kuang, Jorge C. Oliveira, Abina M. Crean, Microencapsulation as a tool for incorporating bioactive ingredients into food, Taylor and Francis Group, Critical Reviews in Food Science and Nutrition, vol.50, no.10, pp.951–968, 2010. |
[10] | María J. Cocero, Ángel Martín, Facundo Mattea, Salima Varona, Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications, Elsevier, The Journal of Supercritical Fluids, vol.47, no.3, pp.546–555, 2009. |
[11] | Masoud Bahrami, Sima Ranjbarian, Production of micro- and nano-composite particles by supercritical carbon dioxide, Elsevier, The Journal of Supercritical Fluids, vol.40, no.2, pp.263–283, 2007. |
[12] | Fereidoon Shahidi, Xiao‐Q. Han, Encapsulation of food ingredients, Taylor & Francis Group, Critical Reviews in Food Science and Nutrition, vol.33, no.6, pp.501–547, 1993. |
[13] | Suresh Neethirajan, Digvir S. Jayas, Nanotechnology for the food and bioprocessing industries, Springer Science, Food and Bioprocess Technology, vol.4, no.1, pp.39–47, 2011. |
[14] | Amparo L. Rubio, Rafael Gavara, Jose M. Lagaron, Bioactive packaging: turning foods into healthier foods through biomaterials, Elsevier, Trends in Food Science & Technology, vol.17, no.10, pp.567–575, 2006. |
[15] | Job Ubbink, Jessica Krüger, Physical approaches for the delivery of active ingredients in foods, Elsevier, Trends in Food Science & Technology, vol.17, no.5, pp.244–254, 2006. |
[16] | Mary A. Augustin, Yacine Hemar, Nano- and micro-structured assemblies for encapsulation of food ingredients, The Royal Society of Chemistry, Chemical Society Reviews, vol.38, no.4, pp.902–912, 2009. |
[17] | Atmane Madene, Muriel Jacquot, Joël Scher, Stéphane Desobry, Flavour encapsulation and controlled release – a review, Institute of Food Science and Technology Trust Fund, International Journal of Food Science and Technology, vol.41, no.1, pp.1–21, 2006. |
[18] | Daniel J. Jarmer, Corinne S. Lengsfeld, Theodore W. Randolph, Manipulation of particle size distribution of poly(L-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent, Elsevier, The Journal of Supercritical Fluids, vol.27, no.3, pp.317–336, 2003. |
[19] | Jennifer Jung, Michel Perrut, Particle design using supercritical fluids: Literature and patent survey, Elsevier, The Journal of Supercritical Fluids, vol.20, no.3, pp.179–219, 2001. |
[20] | Yukiya Hakuta, Hiromichi Hayashi, Kunio Arai, Fine particle formation using supercritical fluids, Elsevier, Current Opinion in Solid State and Materials Science, vol.7, no.4-5, pp.341–351, 2003. |
[21] | Zeljko Knez, Eckhard Weidner, Particles formation and particle design using supercritical fluids, Elsevier, Current Opinion in Solid State and Materials Science, vol.7, no.4-5, pp.353–361, 2003. |
[22] | Alireza Shariati, Cor J. Peters, Recent developments in particle design using supercritical fluids, Elsevier, Current Opinion in Solid State and Materials Science, vol.7, no.4-5, pp.371–383, 2003. |
[23] | Sang -D. Yeo, Erdogan Kiran, Formation of polymer particles with supercritical fluids: a review, Elsevier, The Journal of Supercritical Fluids, vol.34, no.3, pp.287–308, 2005. |
[24] | Ángel Martín, María J. Cocero, Micronization processes with supercritical fluids: fundamentals and mechanisms, Elsevier, Advanced Drug Delivery Reviews, vol.60, no.3, pp.339–350, 2008. |
[25] | Jacques Fages, Hubert Lochard, Jean -J. Letourneau, Martial Sauceau, Elisabeth Rodier, Particle generation for pharmaceutical applications using supercritical fluid technology, Elsevier, Powder Technology, vol.141, no.3, pp.219– 226, 2004. |
[26] | Jean W. Tom, Pablo G. Debenedetti, Particle formation with supercritical fluids – a review, Elsevier, Journal of Aerosol Science, vol.22, no.5, pp.555–584, 1991. |
[27] | Pablo G. Debenedetti, Jean W. Tom, Xianmin Kwauk, Sang -D. Yeo, Rapid expansion of supercritical solutions (RESS): fundamentals and applications, Elsevier, Fluid Phase Equilibria, vol.82, pp.311–321, 1993. |
[28] | Michael Türk, Ralph Lietzow, Formation and stabilization of submicron particles via rapid expansion processes, Elsevier, The Journal of Supercritical Fluids, vol.45, no.3, pp.346–355, 2008. |
[29] | Michael Türk, Dennis Bolten, Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): results for Naproxen, Elsevier, The Journal of Supercritical Fluids, vol.55, no.2, pp.778–785, 2010. |
[30] | Ali Z. Hezave, Feridun Esmaeilzadeh, Micronization of drug particles via RESS process, Elsevier, The Journal of Supercritical Fluids, vol.52, no.1, pp.84–98, 2010. |
[31] | Michael Türk, Peter Hils, Britta Helfgen, Karlheinz Schaber, Hans -J. Martin, Martin A. Wahl, Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents, Elsevier, The Journal of Supercritical Fluids, vol.22, no.1, pp.75–84, 2002. |
[32] | Ángel Martín, Huu M. Pham, Andreas Kilzer, Sabine Kareth, Eckhard Weidner, Micronization of polyethylene glycol by PGSS (particles from gas saturated solutions)-drying of aqueous solutions, Elsevier, Chemical Engineering and Processing, vol.49, no.12, pp.1259–1266, 2010. |
[33] | Kullaiah Byrappa, Satoshi Ohara, Tadafumi Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications, Elsevier, Advanced Drug Delivery Reviews, vol.60, no.3, pp.299–327, 2008. |
[34] | Eckhard Weidner, High pressure micronization for food applications, Elsevier, The Journal of Supercritical Fluids, vol.47, no.3, pp.556–565, 2009. |
[35] | Salima Varona, Sabine Kareth, Ángel Martín, María J. Cocero, Formulation of lavandin essential oil with biopolymers by PGSS for application asbiocide in ecological agriculture, Elsevier, The Journal of Supercritical Fluids, vol.54, no.3, pp.369–377, 2010. |
[36] | Ernesto Reverchon, Supercritical antisolvent precipitation of micro- and nano-particles, Elsevier, The Journal of Supercritical Fluids, vol.15, no.1, pp.1–21, 1999. |
[37] | Renata Adami, Libero S. Osséo, Rainer Huopalahti, Ernesto Reverchon, Supercritical AntiSolvent micronization of PVA by semi-continuous and batch processing, Elsevier The Journal of Supercritical Fluids, vol.42, no.2, pp.288–298, 2007. |
[38] | Chang -K. Kim, Byung -C. Lee, Youn -W. Lee, Hyoun S. Kim, Solvent effect on particle morphology in recrystallization of HMX (cyclotetramethylenetetranitramine) using supercritical carbon dioxide as antisolvent, Springer Science, Korean Journal of Chemical Engineering, vol.26, no.4, pp.1125–1129, 2009. |
[39] | Ernesto Reverchon, Giovanna D. Porta, Igor M. Rosa, Pascale Subra, Didier Letourneur, Supercritical antisolvent micronization of some biopolymers, Elsevier, The Journal of Supercritical Fluids, vol.18, no.3, pp.239–245, 2000. |
[40] | Lei Yang, Jin -M. Huang, Yuan -G. Zu, Chun -H. Ma, Han Wang, Xiao -W. Sun, Zhen Sun, Preparation and radical scavenging activities of polymeric procyanidins nanoparticles by a supercritical antisolvent (SAS) process, Elsevier, Food Chemistry, vol.128, no4, pp.1152–1159, 2011. |
[41] | Ruggero Bettini, R. Menabeni, Roberto Tozzi, Marco B. Pranzo, Irene Pasquali, Michele R. Chierotti, Roberto Gobetto, Luca Pellegrino, Didanosine polymorphism in a supercritical antisolvent process, Wiley Periodicals, Journal of Pharmaceutical Sciences, vol.99, no.4, pp.1855–1870, 2010. |
[42] | Ron T. Y. Lima, Wai K. Nga, Reginald B. H. Tan, Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I), Elsevier, The Journal of Supercritical Fluids, vol.53, no.1-3, pp.179–184, 2010. |
[43] | Ángel Martín, Facundo Mattea, Laura Gutiérrez, Félix Miguel, María J. Cocero, Co-precipitation of carotenoids and biopolymers with the supercritical anti-solvent process, Elsevier, The Journal of Supercritical Fluids, vol.41, pp.138–147, 2007. |
[44] | Pratibhash Chattopadhyay, Boris Y. Shekunov, Jeff S. Seitzinger, Robert W. Huff, Particles from supercritical fluid extraction of emulsion, US Patent N° 0026319 A1, 2004. |
[45] | Boris Y. Shekunov, Pratibhash Chattopadhyay, Jeff Seitzinger, Robert Huff, Springer Science, Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharmaceutical Research, vol.23, no.1, pp.196–204, 2006. |
[46] | Facundo Mattea, Ángel Martín, Arán M. -Gago, María J. Cocero, Supercritical antisolvent precipitation from an emulsion: β-Carotene nanoparticle formation, Elsevier, The Journal of Supercritical Fluids, vol.51, no.2, pp.238–247, 2009. |
[47] | Giovanna D. Porta, Ernesto Reverchon, Nanostructured microspheres produced by supercritical fluid extraction of emulsions, Wiley Periodicals, Biotechnology and Bioengineering, vol.100, no.5, pp.1020–1033, 2008. |
[48] | Facundo Mattea, Ángel Martín, Constantin Schulz, Philip Jaeger, Rudolf Eggers, María J. Cocero, Behavior of an organic solvent drop during the supercritical extraction of emulsions, American Institute of Chemical Engineers, AIChE Journal, vol.56, no.5, pp.1184–1195, 2010. |
[49] | Facundo Mattea, Ángel Martín, María J. Cocero, Carotenoid processing with supercritical fluids, Elsevier, Journal of Food Engineering, vol.93, no.3, pp.255–265, 2009. |
[50] | Natália Mezzomo, Esther de Paz, Marcelo Maraschin, Ángel Martín, María J. Cocero, Sandra R.S. Ferreira, Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: effect of operational conditions on encapsulation efficiency, Elsevier, The Journal of Supercritical Fluids, vol.66, pp.342–349, 2012. |
[51] | Diego T. Santos, Ángel Martín, M. Angela A. Meireles, María J. Cocero, Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions, Elsevier, The Journal of Supercritical Fluids, vol.61, pp.167–174, 2012. |
[52] | Hélder D. Silva, Miguel Â. Cerqueira, António A. Vicente, Nanoemulsions for food applications: development and characterization nanotechnology for the food and bioprocessing industries, Springer Science, Food and Bioprocess Technology, vol.5, pp.854–867, 2012. |
[53] | Pratibhash Chattopadhyay, Robert Huff, Boris Y. Shekunov, Drug encapsulation using supercritical fluid extraction of emulsions, Wiley Periodicals, Journal of Pharmaceutical Sciences, vol.95, no.3, pp.667–679, 2006. |
[54] | Pratibhash Chattopadhyay, Boris Y. Shekunov, Dong -S. Yim, David Cipolla, Brooks Boyd, Stephen Farr, Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system, Elsevier, Advanced Drug Delivery Reviews, vol.59, no.6, pp.444–453, 2007. |
[55] | Johannes Kluge, Francesco Fusaro, Marco Mazzotti, Gerhard Muhrer, Production of PLGA micro- and nanocomposites by supercritical fluid extraction of emulsions: II. Encapsulation of Ketoprofen, Elsevier, The Journal of Supercritical Fluids, vol.50, no.3, pp.336–343, 2009. |
[56] | Johannes Kluge, Marco Mazzotti, Gerhard Muhrer, Solubility of Ketoprofen in colloidal PLGA, Elsevier, International Journal of Pharmaceutics, vol.399, no.1-2, pp.163–172, 2010. |
[57] | Marco Furlan, Johannes Kluge, Marco Mazzotti, Marco Lattuada, Preparation of biocompatible magnetite–PLGA composite nanoparticles using supercritical fluid extraction of emulsions, Elsevier, The Journal of Supercritical Fluids, vol.54, no.3, pp.348–356, 2010. |
[58] | Aaron S. Mayo, Balamurali K. Ambati, Uday B. Kompella, Gene delivery nanoparticles fabricated by supercritical fluid extraction of emulsions, Elsevier, International Journal of Pharmaceutics, vol.387, no.1-2, pp.278–285, 2010. |
[59] | Seid M. Jafari, Yinghe He, Bhesh Bhandari, Nano-emulsion production by sonification and microfluidization – a comparison, Taylor & Francis Group, International Journal of Food Properties, vol.9, no.3, pp.475–485, 2006. |
[60] | Tharwat Tadros, Paqui Izquierdo, Jordi Esquena, Conxita Solans, Formation and stability of nano-emulsions, Elsevier, Advances in Colloid and Interface Science, vol.108-109, pp.303–318, 2004. |
[61] | B. Abismaïl, Jean P. Canselier, Anne M. Wilhelm, Henri Delmas, Christophe Gourdon, Emulsification by ultrasound: drop size distribution and stability, Elsevier, Ultrasonics Sonochemistry, vol.6, no.1-2, pp.75–83, 1999. |
[62] | Johannes Kluge, Francesco Fusaro, Nathalie Casas, Marco Mazzotti, Gerhard Muhrer, Production of PLGA micro- and nanocomposites by supercritical fluid extraction of emulsions: I. Encapsulation of lysozyme, Elsevier, The Journal of Supercritical Fluids, vol.50, no.3, pp.327–335, 2009. |
[63] | Esther de Paz, Ángel Martín, Antonio Estrella, Soraya R. -Rojo, Ana A. Matias, Catarina M. M. Duarte, María J. Cocero, Formulation of β-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant, Elsevier, Food Hydrocolloids, vol.26, no.1, pp.17–27, 2012. |