Food and Public Health
p-ISSN: 2162-9412 e-ISSN: 2162-8440
2012; 2(4): 104-109
doi: 10.5923/j.fph.20120204.04
M. H. Chaves 1, F. D. S. Araújo 1, C. V. R. Moura 1, L. J. Tozetto 2, S. Aued-Pimentel 3, M. S. F. Caruso 3
1Departament of Chemistry, Federal University of Piauí, Teresina , PI, 64049-550, Brazil
2Development Company Vale of São Francisco and Parnaíba, CODEVASF, Brasília , DF, 70830-901, Brazil
3Adolfo Lutz Institute, Division Bromatology and Chemistry, São Paulo, SP, CP 1783, 01059-970, Brazil
Correspondence to: M. H. Chaves , Departament of Chemistry, Federal University of Piauí, Teresina , PI, 64049-550, Brazil.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The aim of this study was to characterize the Bombacopis glabra nut oil (Malvaceae-Bombacoideae) by the determination of its lipid content and fatty acid composition with emphasis on the cyclopropenoid fatty acids (CPFA). The lipids were obtained by five different extraction conditions:[raw almonds: maceration with ethyl ether (I-MA) and n-hexane (II-MA), both at room temperature, and Soxhlet extraction with hexane for 6 (III-MA) and 12 h (IV-MA) and toasted almond: maceration with hexane at room temperature (V-MA)]. Additionally, the oxidation stability of oil by the Rancimat test and the boiling point by thermal analysis (technical TG / DTG) were evaluated. The oil content ranged from 34.99 (I-MA) to 47.36% (IV-MA); oxidation stability was 4.18 h and the boiling point was 373.37 ℃. It should be noted that results about thermal and oxidative stability are been reported for the first time with respect to Bombacopis glabra nut oil. The major oil constituents were palmitic acid (56.06%) and estercúlico (24.83%). The high percentage of CPFA oil, determined by NMR 1H (26.2 to 30.9%) and GC-FID (26.5%), reinforce that the kernels of this species are not suitable for human consumption.
Keywords: Cyclopropenoid Fatty Acids, Oxidation Stability, Thermogravimetric Analysis
(1) |
Figure 1. Chromatograms of methyl esters of fatty acids of B. glabra (castanha-do-maranhão) nut oil obtained in a gas chromatograph: (A) flame ionization detector; (B) mass detector. 1. Myristic acid (14:0); 2. Palmitic acid (16:0); 3. Palmitoleic acid (16:1, 9Z); 4. Margaric acid (17:0); 5. Stearic acid (18:0); 6. Malvalic acid; 7. Oleic acid (18:1, 9Z); 8. Vaccenic acid (18:1, 11Z); 9. Linoleic acid (18:2, 9Z,12Z); 10. Sterculic acid; 11. Linolenic acid (18:3, 9Z,12Z,15Z); 12. Arachidic acid (20:0); 13. Behenic acid (22:0); 14. Lignoceric acid (24:0); NI: unidentified |
|
Figure 2. TG/DTG curve of the B. glabra oil extracted with hexane at room temperature |
[1] | Paula, V. F., Barbosa, L. C. A., Errington, W., Howard, O. W., Cruz, M. P., “Chemical constituents from Bombacopsis glabra (Pasq) A. Robyns: Complete 1H e 13C RMN assignments and X Ray structure of 5-hidroxy-3,6,7,8,4’- pentamethoxyflavone”. Journal of Brazilian Chemical Society, vol. 13, pp. 276-280, 2002. |
[2] | Nyffeler, R., Bayen, C., Alverson, W.S., Yen, A., Whitlock, B.A., Chase, M.W., Baum, D.A. “Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences”, Organisms, Diversity & Evolution, vol. 5, pp. 109-123, 2005. |
[3] | Pospíšil, F., Hrachová, B. “Bombacopsis glabra (Pasq.) Robyns: a promising oil-bearing crop for the Socialist Republic of Vietnam”, Agricultura Tropica et Subtropica, vol. 20, pp. 127-142, 1987. |
[4] | Scalon, S. P. Q., Mussury, R. M., Rigoni, M. R., Scalon Filho, H. “Crescimento inicial de mudas de Bombacopsis glabra (Pasq.) A. Robyns sob condição de sombreamento”, Revista Árvore, vol. 27, pp. 753-758, 2003. |
[5] | Piccolo, A. L. G. “Sobre o fruto, semente e estágios iniciais de desenvolvimento de Bombacopsis glabra (Pasq.) A. Robyns”, Garcia de Orta, Série de Botânica, vol. pp. 1-4, 1981. |
[6] | Breyne H. “Bombacopsis glabra (Pasquale) A. Robyns (Bombacaceae) espèce utile pour l’élevage et pour l’alimentation humaine”. Tropicultura, vol. 1, pp. 78-85, 1993. |
[7] | Vickery, J. R. “The fatty acid composition of seed oils from ten plant families with particular reference to cyclopropene and dihydrosterculic acids”, Journal of the American Oil Chemists Society, vol. 57, pp. 87-91, 1980. |
[8] | Chaves, M. H., Barbosa, A. S., Moita Neto, J. M., Aued-Pimentel, S., Lago, J. H. G. “Caracterização química do óleo da amêndoa de Sterculia striata St Hil. et Naud”, Química Nova, vol. 27, pp. 404-408, 2004. |
[9] | Aued-Pimentel, S., Lago, J. H. G., Chaves, M. H., Kumagai, E. E. “Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St. Hil. Nauds seed oil”, Journal of Chromatography A, vol. 1054, pp. 235-239. 2004. |
[10] | Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, 3nd ed. Jonh Wiley and Sons, New York, 2009. |
[11] | Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos para análise de alimentos, 4th ed, IMESP, São Paulo, 2005. |
[12] | Vieira Júnior, G. M., Silva, H. R., Bittencourt, T. C., Chaves, M. H. “Terpenos e ácidos graxos de Dipteryx lacunifera Ducke”, Química Nova, vol. 30, pp. 1658-1662, 2007. |
[13] | Goodrum, J. W. Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass and Bioenergy, vol. 22, pp. 205-211, 2002. |
[14] | Goodrum J. W., Geller, D. P. “Rapid thermogravimetric measurements of boiling points and vapor pressure of saturated medium-and long-chain triglycerides”, Bioresource Technology, vol. 84, pp. 75-80, 2002. |
[15] | Antoniassi R. “Métodos de avaliação da estabilidade oxidativa de óleos e gorduras”, Boletim do Centro de Pesquisa de Processamento de Alimentos, vol. 19, pp. 353-380, 2001. |
[16] | Geris, R., Santos, N. A. C., Amaral, B. A., Maia, I. S., Castro, V. D., Carvalho, J. R. M. “Biodiesel de soja – reação de transesterificação para aulas práticas de Química Orgânica”, Química Nova, vol. 30, pp. 1369-1373, 2007. |
[17] | Mangas, M. B. P., Rocha, F. N., Suarez, P. A. Z., Meneghetti, S. M. P., Barbosa, D. C., Santos, R. B. Carvalho, S. H. V., Soletti, J. I. “Charaterization of biodiesel and bio-oil from Sterculia striata (chichá) oil”, Industrial Crops and Products, vol. 36, pp. 349-354, 2012. |
[18] | Lima, J. R. O., Silva, R. B., Silva, C. C. M., Santos, L. S. S., Santos Júnior., J. R., Moura, E. M., Moura, C. V. R. “Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica”, Química Nova, vol. 30, pp. 600-603, 2007. |
[19] | Conceição, M. M., Candeia, R. A., Silva F. C., Bezerra, A. F., Fernandes V. J., Souza A. G. “Thermoanalytical characterization of castor oil biodiesel”, Renewable and Sustainable Energy Reviews, vol. 11, pp. 964-975, 2007. |
[20] | Queiroga Neto, V., Bora P. S., Diniz Z. N., Cavalheiro, J. M. O., Queiroga, K. F. “Dipteryx lacunifera seed oil: characterization and thermal stability”, Ciência e Agrotecnologia, vol. 33, pp. 1601-1607, 2009. |
[21] | Araújo, F. D. S., Moura, C. V. R., Chaves, M. H. “Biodiesel metílico de Dipteryx lacunifera: preparação, caracterização e efeito de antioxidantes na estabilidade à oxidação”, Química Nova, vol. 33, pp. 1671-1676, 2010. |
[22] | Diniz, Z. N., Bora, P. S., Queiroga Neto, V., Cavalheiro, J. M. O. “Aceite de almendra de la semilla de Sterculia striata: caracterización y estabilidad térmica”, Grasas y Aceites, vol. 59, pp. 160-165, 2008. |
[23] | Ferrari, R. A., Souza, W. L. “Avaliação da estabilidade oxidativa de biodiesel de óleo de girassol com antioxidantes”, Química Nova, vol. 32, pp. 106-111, 2009. |
[24] | Araújo, J. M. A. Química de Alimentos: Teoria e Prática. 2. ed., Editora UFV, Viçosa, 1999. |
[25] | Dabdoub, M. J., Brozel, J. L., Rampin, M. A. “Biodiesel: visão crítica do status atual e perspectivas na academia e na indústria”, Química Nova, vol. 32, pp. 776-792, 2009. |