[1] | X.-Q. Zhao, L. Wang, W. Sun. (2006) The repeated homogeneous balance method and its applications to nonlinear partial differential equations, Chaos, Solitons and Fractals, 28(2), 448-453 |
[2] | S.J. Liao. (2005) A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transfer, 48, 2529-2539 |
[3] | S.J. Liao. (2009) A general approach to get series solution of non-similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simul., 14(5), 2144-2159 |
[4] | M.T. Darvishi, Maliheh Najafi, Mohammad Najafi. (2010) Exact three-wave solutions for high nonlinear form of Benjamin-Bona-Mahony-Burgers equations, International Journal of Mathematical and Computer Sciences, 6(3), 127-131 |
[5] | M.T. Darvishi, Mohammad Najafi. (2012) Some exact solutions of the (2+1)-dimensional breaking soliton equation using the three-wave method, World Academy of Science, Engineering and Technology, 87, 31-34 |
[6] | M.T. Darvishi, Maliheh Najafi, Mohammad Najafi. (2010) New exact solutions for the (3+1)-dimensional breaking soliton equation, International Journal of Information and Mathematical Sciences, 6(2), 134-137 |
[7] | M.T. Darvishi, Maliheh Najafi, Mohammad Najafi. (2010) New application of EHTA for the generalized (2+1) -dimensional nonlinear evolution equations, International Journal of Mathematical and Computer Sciences, 6(3), 132-138 |
[8] | M.T. Darvishi, Mohammad Najafi. (2011) A modification of extended homoclinic test approach to solve the (3+1)- dimensional potential-YTSF equation, Chin. Phys. Lett., 28(4), art. no. 040202 |
[9] | M.T. Darvishi, Mohammad Najafi. (2012) Some complexiton type solutions of the (3+1)-dimensional Jimbo-Miwa equation, World Academy of Science, Engineering and Technology, 87, 42-44 |
[10] | M.L. Wang., X.Z. Li, J.L. Zhang. (2008) The -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics,, Physics Letters A, 372 , 417-423 |
[11] | M.T. Darvishi, Maliheh Najafi, Mohammad Najafi. (2012) Traveling wave solutions for the (3+1)-dimensional breaking soliton equation by -expansion method and modified -expansion method, World Academy of Science, Engineering and Technology, 88, 37-42 |
[12] | J.H. He, M.A. Abdou. (2007) New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons and Fractals, 34, 1421-1429 |
[13] | B.C. Shin, M.T. Darvishi, A. Barati (2009) Some exact and new solutions of the Nizhnik-Novikov-Vesselov equation using the Exp-function method, Comput. Math. Appl., 58(11/12) (2009) 2147-2151 |
[14] | X.H. Wu, J.H. He. (2008) Exp-function method and its application to nonlinear equations, Chaos, Solitons and Fractals, 38(3), 903-910 |
[15] | R.K. Prud’homme, S.A. Khan (Eds.), Foams: Theory, Measurements and Applications, Dekker, New York, 1996 |
[16] | D.L. Weaire, S. Hutzler, The Physics of Foams, Oxford University Press, Oxford, 2000 |
[17] | H.A. Stone, S.A. Koehler, S. Hilgenfeldt, M. Durand. (2003) J. Phys. Condens. Matter., 15, S283-S290 |
[18] | S. Hilgenfeldt, S.A. Koehler, H.A. Stone. (2001) Dynamics of coarsening foams: Accelerated and self-limiting drainage, Phys. Rev. Lett., 20, 4704-4707 |
[19] | J.I.B. Wilson. (2003) Essay review, scholarly froth and engineering skeletons, Contemp. Phys., 44, 153-155 |
[20] | L.J. Gibson, M.F. Ashby, Cellular Solids: Structure & Properties, Cambridge University Press, Cambridge, 1997 |
[21] | J. Banhart, W. Brinkers. (1999) Fatigue behavior of aluminum foams, J. Mater. Sci. Lett., 18, 617-619 |
[22] | M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide, Society of Automotive Engineers, Boston, 2000 |
[23] | M. Duranda, D. Langevin. (2002) Physicochemical approach to the theory of foam drainage, Europhys. J. E, 7, 35-44 |
[24] | G. Verbist, D. Weaire. (1994) Soluble model for foam drainage, Europhys. Lett., 26, 631-634 |
[25] | G. Verbist, D. Weaire, A.M. Kraynik. (1996) The foam drainage equation, J. Phys. Condens. Matter, 8, 3715-3731 |
[26] | D. Weah, S. Hutzler, N. Pittet, D. Pard. (1993) Steady-state drainage of an equeous foam, Phys. Rev. Lett., 71, 2670-2673 |
[27] | M.A. Helal, M.S. Mehanna. (2007) The tanh method and Adomian decomposition method for solving the foam drainage equation, Appl. Math. Comput., 190 (1), 599-609 |
[28] | F. Khani, S. Hamedi-Nezhad, M.T. Darvishi, S.-W. Ryu (2009) New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method, Nonlin. Anal.: Real World Appl., 10, 1904-1911 |
[29] | P.L.J. Zitha, F.J. Vermolen. (2006) Self-similar solutions for the foam drainage equation, Transp. Porous Media, 63, 195-200 |
[30] | M.T. Darvishi, F. Khani. (2009) A series solution of the foam drainage equation, Comput. Math. Appl., 58, 360-368 |
[31] | J.H. He, Variational approach to foam drainage equation, Meccanica, (in press), DOI: 10.1007/s11012-010-9382-0 |
[32] | J. Wang. (2010) Construction of new exact traveling wave solutions to (2+1)- dimensional mVN equation, Inter. J. Nonl. Sci., 9(3) , 325-329 |