[1] | Xu, B., & Chang, S. K. C. (2009). Phytochemical Profiles and Health-Promoting Effects of Cool-Season Food Legumes As Influenced by Thermal Processing. Journal of Agricultural and Food Chemistry, 57(22), 10718–10731. doi:10.1021/jf902594m. |
[2] | Omenna, E. C., Olanipekun, O. T., &Kolade, R. O. (2016). Effect of boiling, pressure cooking and germination on the nutritional and antinutrients content of cowpea (Vigna unguiculata). ISABB Journal of Food and Agricultural Sciences, 6(1), 1-8. |
[3] | ANSD, 2018. (National Agency of Statistics and Demography). Monthly Bulletin of Economic Statistics. Dakar 109 p. |
[4] | Mune MA, Minka S R, Mbome L I, (2013). Response surface methodology for optimisation of protein concentrate preparation from cowpea Vigna unguiculata (L.) Walp Food Chem 110: 735-741. |
[5] | Obasi, N. E., Unamma, N. C., & Nwofia, G. E. (2014). Effect of dry heat pre-treatment (toasting) on the cooking time of cowpeas (Vigna unguiculata L. Walp). Nigerian Food Journal, 32(2), 16-24. |
[6] | Reddy, N. R., Sathe, S. K. 2002. Food phytates. Boca Ranton, Florida: CRC press. 280 p. ISBN 9781566768672. |
[7] | Gonçalves, A., Goufo, P., Barros, A., Domínguez‐Perles, R., Trindade, H., Rosa, E. A., ... & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri‐food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96(9), 2941-2951. |
[8] | Isabelle Lestienne, ChristèleIcard-Vernière, Claire Mouquet, Christian Picq, Serge Trèche. Effects of soaking whole grain and legume seeds on iron, zinc and phytate contents. Food Chemistry. 2005; 89(3): 421-425. Doi:10.1016/j.foodchem.2004.03.040. |
[9] | Diouf, A., Sarr, F., Sene, B., Ndiaye, C., Fall, S. M., & Ayessou, N. C. (2019). Pathways for Reducing Anti-Nutritional Factors: Prospects for Vigna unguiculata. |
[10] | El-Adawy TA Nutritional Composition and Antinutritional Factors of Chickpeas (Cicer arietinum L.) Undergoing Different Cooking Methods and Germination. Plant Food Hum. Nutr. 2002; 57(1): 83-97. |
[11] | Egounlety M and OC AworhEffect of Soaking, Dehulling, Cooking and Fermentation with RhizopusOligosporus on the Oligosaccharides, TrypsinInhibitor, Phytic Acid and Tannins of Soybean (Glycine max Merr.), Cowpea (Vigna unguiculata L. Walp) and Groundbean (MacrotylomageocarpaHarms). J. Food Eng. 2003; 56(2-3): 249-254. |
[12] | Andriantsoa Z J. Evolution of antinutritional factors of two varieties of cowpea (vignaunguiculata), voanembamena and voanembafotsy, during germination. (DEA dissertation of Biochemistry applied to the sciences of food and nutrition). Faculty of Science: Antananarivo University. 2006. |
[13] | Razafitsalama N. Evolution of antinutritional factors of seeds of two varieties of voandzou, mara and fotsy, during germination. DEA dissertation of Biochemistry applied to the sciences of food and nutrition). Faculty of Science: University of Antananarivo. 2006. |
[14] | Ben Souilah F, 2015. Caractérisation du comportement des micronutriments d’intéret et des composes antinutritionnels des poischiches et du niébé au cours de transformation. Mémoire de fin d’étude pour l’obtention du diplome de master enbiologie santé, université Montpellier, 47p. |
[15] | Latta M. and Eskin M. 1980. Journal of Agricultural and Food Chemistry 28 (6), 1313-1315 DOI: 10.1021/jf60232a049. |
[16] | Vaintraub I.A; Lapteva N.A, 1988. Colorimetric determination of phytate in unpurifed extracts of seeds and the products of their processing. Analytical Biochemistry, 175: 227-230pp. |
[17] | Aoac 18th ed. rev. 2007. method 968.08(4.8.02). |
[18] | Bolade, M. K. (2016). Individualistic impact of unit operations of production, at household level, on some antinutritional factors in selected cowpea‐based food products. Food science & nutrition, 4(3), 441-455. |
[19] | Sivakumaran, K., Wansapala, J., &Herath, T. (2018). Total phosphorus, phytate phosphorus contents and the correlation of phytates with amylose in selected edible beans in Sri Lanka. Potravinárstvo: Slovak Journal of Food Sciences, 12(1), 57-62. |
[20] | Olika, E., Abera, S., & Fikre, A. (2019). Physicochemical Properties and Effect of Processing Methods on Mineral Composition and Antinutritional Factors of Improved Chickpea (Cicer arietinum L.) Varieties Grown in Ethiopia. International Journal of Food Science, 2019. |
[21] | Karkle, E. N. L., & Beleia, A. (2010). Effect of soaking and cooking on phytate concentration, minerals, and texture of food-type soybeans. Food Science and Technology, 30(4), 1056-1060. |
[22] | Ertaş, N., &Türker, S. (2012). Bulgur processes increase nutrition value: possible role in in-vitro protein digestability, phytic acid, trypsin inhibitor activity and mineral bioavailability. Journal of Food Science and Technology, 51(7), 1401–1405. doi:10.1007/s13197-012-0638-7. |
[23] | Avanza M., Acevedo B., Chaves M., M. Añón. Nutritional and antinutritional components of four cowpea varieties under thermal treatments: Principal component analysis. LWT-Food Science and Technology. 2013; 51(1): 148-157. Doi:10.1016/j.lwt.2012.09.010. |
[24] | Udensi, E. A., Ekwu, F. C., & Isinguzo, J. N. (2007). Antinutrient factors of vegetable cowpea (sesquipedalis) seeds during thermal processing. Pakistan Journal of Nutrition, 6, 194e197. |
[25] | Vijayakumari, K., Siddhuraju, P., Pugalenthi, M., & Janardhanan, K. (1998). Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna aconitifolia and Vigna sinensis. Food Chemistry, 63(2), 259–264. doi:10.1016/s0308-8146(97)00207-0. |
[26] | Yoshida T, Tanaka K, Kasai Z. 1975. Phytate activity associated with isolated aleurone particles of rice grains. AgricBiolChem 39: 289–290. |
[27] | Tomschy, A., Brugger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., & Pasamontes, L. (2002). Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol., 68(4), 1907-1913. |
[28] | Agte, V. V., Gokhale, M. K., & Chiplonkar, S. A. (1997). Effect of natural fermentation on in vitro zinc bioavailability in cereal-legume mixture. International Journal of Food Science & Technology, 31, 29–32. https://doi.org/10.1046/j.1365-2621.1997.00372.x. |
[29] | Liang J, Han B-Z, Han L, Nout MJR, Hamer RJ (2007) Iron, zinc, and phytic acid content of selected rice varieties from China. Journal of the Science of Food and Agriculture 87: 504- 510. |
[30] | Pereira, E. J., Carvalho, L. M., Dellamora-Ortiz, G. M., Cardoso, F. S., Carvalho, J. L., Viana, D. S., ... & Rocha, M. M. (2014). Effects of cooking methods on the iron and zinc contents in cowpea (Vigna unguiculata) to combat nutritional deficiencies in Brazil. Food & Nutrition Research, 58(1), 20694. |
[31] | Weaver, C. M.; Kannan, S. Phytate and mineral bioavailability. In: REDDY, N. R.; SATHE, S. K. (Eds.). Food phytates Florida: CRC, 2002. p. 211-223. |
[32] | Gibson RS, Perlas L, Hotz C. Improving the bioavailability of nutrients in plant foods at the household level. Proc Nutr Soc 2006; 65: 160–168. http://dx.doi.org/10.1079/PNS2006489. |
[33] | Adeyeye, E. I. et al. Calcium, zinc and phytate interrelationships in some foods of major consumption in Nigeria. Food Chemistry, v. 71, n. 4, p. 435-441, 2000. |