[1] | Afolayan, A. J., & Meyer, J. J. (1997). The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. Journal of Ethnopharmacology, 57(3), 177-181. |
[2] | Appendini, P. (1996). Immobilization of lysozyme on synthetic polymers for the application to food packaging (Unpublished master's thesis). Ithaca, NY: Cornell University. |
[3] | Baydar, N. G., Özkan, G., & Sağdiç, O. (2004). Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control, 15(5), 335-339. |
[4] | Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2010). In Vitro Evaluation of the Antimicrobial Activity of Eugenol, Limonene, and Citrus Extract against Bacteria and Yeasts, Representative of the Spoiling Microflora of Fruit Juices. Journal of Food Protection, 73(5), 888-894. |
[5] | Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., Voorde, G. T., ... Sips, A. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52-62. |
[6] | Bradley, E. L., Castle, L., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, 1-7. |
[7] | Buzby, J. C. (2010). Nanotechnology for Food Applications: More Questions Than Answers. Journal of Consumer Affairs, 44(3), 528-545. |
[8] | Céspedes, C. L., Avila, J. G., Martínez, A., Serrato, B., Calderón-Mugica, J. C., & Salgado-Garciglia, R. (2006). Antifungal and Antibacterial Activities of Mexican Tarragon (Tagetes lucida). Journal of Agricultural and Food Chemistry, 54(10), 3521-3527. |
[9] | Chau, C., Wu, S., & Yen, G. (2007). The development of regulation for food nanotechnology. Trends in Food Science & Technology, 18(5), 269-280. |
[10] | Chawengkijwanich, C., & Hayata, Y. (2008). Development of Titanium Oxide powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. |
[11] | Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., ... Traversa, E. (2005). Copper Nanoparticle / Polymer Composites with Antifungal and Bacteriostatic Properties. Chemistry of Materials, 17(21), 5255-5262. |
[12] | Cutter, C. N. (2002). Microbial Control by Packaging: A Review. Critical Reviews in Food Science and Nutrition, 42(2), 151-161. |
[13] | Dahham, S. S., Ali, M. N., Tabassum, H., & Khan, M. (2010). Studies on Antibacterial and Antifungal Activity of Pomogranate (Punica granatum L.). American-Eurasian Journal of Agricultural & Environmental Science, 9(3), 273-281. |
[14] | Dainelli, D., Gontard, N., Spyropoulos, D., Zondervanvandenbeuken, E., & Tobback, P. (2008). Active and intelligent food packaging: Legal aspects and safety concern. Trends in Food Science & Technology, 19, S103-S113. |
[15] | Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. |
[16] | Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182. |
[17] | Fayaz, A. M., Balaji, K., Girilal, M., Kalaichelvan, P. T., & Venkatesan, R. (2009). Mycobased Synthesis of Silver Nanoparticles and Their Incorporation into Sodium Alginate Films for Vegetable and Fruit Preservation. Journal of Agricultural and Food Chemistry, 57(14), 6246-6252. |
[18] | F.D.A. (2014). Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients that Are Color Additives. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition. Available online: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ ucm300661.htm. Accessed on Nov. 24, 2014. |
[19] | Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. |
[20] | Gil, M. I., Tomas-Barbera´, F. A., Hess-Pierc, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant Activity of Pomogranate Juice and Its Relationship with Phenolic Composition and Processing. Journal of Agricultural and Food Chemistry, 48(10), 4581-4589. |
[21] | Gortzi, O., Lalas, S., Chinou, I., & Tsaknis, J. (2008). Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European Food Researchand Technology, 226(3), 583-590. |
[22] | Guidlines for testing of manufactured Nanomaterials: OECD Sponsorship programme. (2010, June 2). Www.oecd.org. Retrieved 2012. |
[23] | Han, J. H. (2005). Antimicrobial Packaging System. In Innovations in Food Packaging. |
[24] | Ilg, Y., & Kreyenschmidt, J. (2011). Effects of food components on the antimicrobial activity of polypropylene surfaces containing silver ions (Ag + ). International Journal of Food Science & Technology, 46(7), 1469-1476. |
[25] | Jin, T. (2010). Inactivation of Listeria monocytogenes in Skim Milk and Liquid Egg White by Antimicrobial Bottle Coating with Polylactic Acid and Nisin. Journal of Food Science, 75(2), M83-M88. |
[26] | Jin, T., & Gurtler, J. B. (2011). Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. Journal of Applied Microbiology, 110(3), 704-712. |
[27] | Joerger, R. D. (2007). Antimicrobial Films for Food Applications: A Quantitative Analysis of Their Effectiveness. Packaging Technology and Science, 20(4), 231-273. |
[28] | Joerger, R. D., Sabesan, S., Visioli, D., Urian, D., & Joerger, M. C. (2009). Antimicrobial Activity of Chitosan Attached to Ethylene Copolymer. Packaging Technology and Science, 22(3), 125-138. |
[29] | Li, B., Kennedy, J. F., Peng, J. L., Yie, X., & Xie, B. J. (2006). Preparation and performance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohydrate Polymer, 65(4), 488-494. |
[30] | Li, X., Xing, Y., Jiang, Y., Ding, Y., & Li, W. (2009). Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. International Journal of Food Science and Technology, 44(11), 2161-2168. |
[31] | Makwana, S., Choudhary R., Dogra, N., Kohli P.and Haddock, J. (2014). Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT Food Science and Technology. 57(2): 470-476. |
[32] | Makwana, Sanjaysinh (2013). Study of antibacterial property of plant based phenolic compounds and food contact materials coated with functionalized nanoparticles. M.S. Thesis, Southern Illinois University, Carbondale, IL. |
[33] | Markin, D., Duek, L., & Berdicevsky, I. (2003). In vitro antimicrobial activity of olive leaves. Mycoses, 46(3-4), 132-136. |
[34] | Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464-469. |
[35] | Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., & Villani, F. (2004). Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. Journal of Applied Microbiology, 97(2), 314-322. |
[36] | Mekkerdchoo, O., Patipasena, P., & Borompichaichartkul, C. (2009). Liposome encapsulation of antimicrobial extracts in pectin film for inhibition of food spoilage microorganisms. Asian Journal of Food and Agro-Industry, 2(4), 817-838. |
[37] | Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., & Ramírez, J. T. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353. |
[38] | Neethirajan, S., & Jayas, D. S. (2010). Nanotechnology for the Food and Bioprocessing Industries. Food and Bioprocess Technology, 4(1), 39-47. |
[39] | Newell, D. G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., ... Kruse, H. (2010). Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139, S3-S15. |
[40] | Nielsen, P. V., & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International Journal of Food Microbiology, 60(2-3), 219-229. |
[41] | Nirmala, J. G., & Narendhirakannan, R. (2011). In vitro antioxidant and antimicrobial activities of Grapes (Vitis Vinifera L.) Seed and skin extracts. International Journal of Pharmacy and Pharmaceutical Science, 3(4), 242-249. |
[42] | Nychas, G. (n.d.). Natural antimicrobials from plants. In New Method of Food Preservation. |
[43] | Rasooli, I. (2007). Food Preservation – A Biopreservative Approach. Food Global Science Books, 111-136. |
[44] | Prasad, P., Kochhar, A. (2014). Active Packaging in Food Industry: A Review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(5), 1-7. |
[45] | Restuccia, D., Gianfranco Spizzirri, U., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F. Picci, N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 21(11), 1425-1435. |
[46] | Roco, M.C. (2011). The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, 13: 427-445. |
[47] | Salleh, E., & Muhamad, I. I. (2007). AIP Conference Proceedings (Vol. 1217, pp. 432-436). |
[48] | Sánchez-Valdes, S., Ortega-Ortiz, H., Ramos-de Valle, L. F., Medellín-Rodríguez, F. J., & Guedea-Miranda, R. (2009). Mechanical and Antimicrobial Properties of Multilayer Films with a Polyethylene/Silver Nanocomposite Layer. Journal of Applied Polymer Science, 111(2), 953-962. |
[49] | Santurio, D. F., Da Costa, M. M., Maboni, G., Cavalheiro, C. P., Facco de Sá, M., Pozzo, M. D., Martins Fries, L. (2011). Antimicrobial activity of spice essential oils against Escherichia coli strains isolated from poultry and cattle. Ciência Rural, 41(6), 1051-1056. |
[50] | Sargent Jr., J.F. (2013). Nanotechnology: A Policy Primer. Congressional Research Service, available online at https://fas.org/sgp/crs/misc/RL34511.pdf, accessed on Nov 20, 2014. |
[51] | Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine Nanotechnology Biology and Medicine, 3(2), 168-171. |
[52] | Sheikh, F.A., Kanjawal, M.A., Saran S., Chung W.J., Kim, H. (2011). Polyurethane nanofibers containing copper nanoparticles as future materials. Applied Surface Science, 257, 3020-3026. |
[53] | Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177-182. |
[54] | Tayle, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial action of Zinc Oxide nanoparticles against Foodborne pathogens. Journal of Food Safety, 31(2), 211-218. |
[55] | Taylor, T. M. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605. |