[1] | Pateras, I. (2007) Technology of breading, Ch 10 Bread Spoilage and staling.275-298. |
[2] | Degrirmencioglu, N., Gocmen, D., Inkaya, A. N., Aydin, E., Guldas, M.,& Gonenc, S. (2011) Influence of modified atmosphere packaging and potassium sorbate on microbiological characteristics of sliced bread. J, Food sci technology 48(2):236-241. |
[3] | Hussain, A., &Jamil, K. (2012). Studies on the shelf life enhancement of traditional leavened bread. J. Biochem. Mol. Bio. 45(2): 81-84. |
[4] | Wei1, H., YanJun, Y., NingTao, L., &LiBing, W. (2011) Application and safety assessment for nano-composite materials in food packaging. J. Materials Science.l.56 :12 (1216–1225). |
[5] | De Azeredo, H. M.C.(2012) Antimicrobial activity of nanomaterials for food packaging applications. Ch, 13. |
[6] | Ayhan, Z. (2011). Effect of Packaging on the Quality and Shelf-life of Minimally Processed/Ready to Eat Foods. J.Academic Food Journal 9 (4) 36-41. |
[7] | Guynot, M. E., Sanchis, V., Ramos, A. J., & Marin, S. (2003) Mold-free shelf-life extension of bakery products by active packaging. J,Food microbiology and safety. |
[8] | Gutierrez, L., Batle, R., Andujar, S., Sanchez, C., &Nerin, C. (2011).Eavluationof antimicrobial active packaging to increase shelf life of gluten-free sliced bread. J. Packaging technology and science. (24) 485-494. |
[9] | Ronda, F., Caballero, P. A., Quilez, J., &Roos, Y. H. (2011). Staling of frozen partly and fully baked breads. Study of the combined effect of amylopectin recrystallization and water content on bread firmness. J, Cereal Science (53) 97-103. |
[10] | Leuschner.R. G. K., O’Callaghan, M. J. A., & Arendt, E.K. (1999) Moisture distribution and microbial quality of part baked breads as related to storage and rebaking conditions. J. Food science. 64(3)543-5346. |
[11] | Tian, F., Decker, E. A., & Goddard, J. M. (2012) Development of an iron chelating polyethylene film of active packaging applications. J, Agric. Food chem(60) 2046-2052. |
[12] | Ray, S., Quek, S. Y., Easteal, A., Chen, X. D. (2006). The potential use of polymer-claynanocomposites in food Packaging. J. International Journal of Food Engineering. (2) 4. |
[13] | Parra, A. P.(2012)Smarat packaging. Intrection and security for a better quality of life. Workshop on technology for healthcare and health lifestyle 10-12. |
[14] | Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999) Developments in the active packaging of foods. J, Trends in food science and technologh (10)77-86. |
[15] | Suppakul, P., Miltz, J., Sonnerveld, K., & Bigger, S.W.(2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J, Food science (68) 408-420. |
[16] | Tian, F., Decker, E. a, & Goddard, J. M. (2012). Development of an iron chelating polyethylene film for active packaging applications. Journal of agricultural and food chemistry, 60(8), 2046–52. |
[17] | De Azeredo, H. D. (2009). Nanocomposites for food packaging applications. Food Research International (42) 1240–1253. |
[18] | Fisher, D. (2008). The next innovative wave: Nanotechnology in packaging. Rochester institute of technology. |
[19] | Bradley, E. L., Castle, L., &Chaudhry, Q. (2011). Application of nanomaterialsin food packaging with a consideration of opportunities for developing countries. J, Food science and technology (22) 604-610. |
[20] | Sozer, N., &Kokini, J. L.(2009). Nanotechnology and its applications in the sector. Illinois Agricultural Experiment Station, 82-89. |
[21] | Cabedo, L., Feijoo, J.L., Villanueva, M. P., Lagaro, M.,&nez, E. G. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. J. Macromol. Symp. 233, 191–197. |
[22] | Avella, M., Vlieger, J. J. D., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G.(2005). Biodegradable starch/clay nanocomposite films for food packaging applications. J. Food Chemistry (93) 467–474. |
[23] | Cioffi, N., &Rai, M. (2012). Antimicrobial Activity of Nanomaterialsfor Food Packaging Applications. Ch. 13. |
[24] | Tayel, A. A., El-tras, W. F., Moussa, S., El-baz, A. F., Mahrous, H., Salem, M. F. &Brimer, L. (2011) Antibacterial action of zinc oxide nanoparticles against Foodborne pathogens. J. Food safety. 31(211-218). |
[25] | Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghiblli, L., Sabbatini, L., Beeve-Zacheo, T., Alessio, M. D., Zambonin, P. G., &Traversa, E. (2005) Copper nanoparticle/polymer composites with antifungal & bacteriostatic properties. Retrieved from: http://pubs.acs.org/doi/abs/10.1021/ cm0505244. |
[26] | Bhawana, Basniwal, R. K., Buttar, H. S., Jain, V. K., & Jain, N. (2011) Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agricultural and food chemistry. 59 (2056-2061). |
[27] | Damm, C., Munstedt, H., &Rosch, A. (2008). The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. J. Material chemistry and physics (108) 61-66. |
[28] | Moura, M. R. D., Mattoso, L. H. C., &Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J, Food Engineering (109 ) 520–524. |
[29] | An, J., Zhang, M., Wang, S., & Tang, J. (2008). Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. J. An et al. / LWT (41) 1100–1107. |
[30] | Son, W. K., Youk, J.H., & Park, W. H. (2006). Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. J. Carbohydrate Polymers (65) 430–434. |
[31] | Stampfli, N., Siegrist, M., &Kastenholz, H. (2010). Acceptance of nanotechnology in food and food packaging: a path model analysisJ. Risk research. 13(3) 335–347. |