International Journal of Food Science and Nutrition Engineering
p-ISSN: 2166-5168 e-ISSN: 2166-5192
2012; 2(5): 76-84
doi: 10.5923/j.food.20120205.02
Beatriz Brito 1, Fabrice Vaillant 2
1Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Departamento de Nutrición y Calidad, A.P. 340, Quito, Ecuador
2Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Tropical Fruits Department (FLHOR), B.P. 5085, 34032 Montpellier Cedex 1, France
Correspondence to: Fabrice Vaillant , Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Tropical Fruits Department (FLHOR), B.P. 5085, 34032 Montpellier Cedex 1, France.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Table mango varieties discarded by the export market are generally not considered suitable for processing mainly because they yield too viscous fruit purées. The objective of this study was determining if appropriate enzymatic treatment can overcome this barrier. Cell-wall polysaccharides from mesocarp and pericarp of fully ripe table mangoes were characterized analyzing the alcohol-insoluble residues (AIR). Content of celluloses, hemicelluloses, lignin and soluble and insoluble pectin were assessed after selective extraction. After hydrolysis of main fractions, neutral sugars were determined by gas chromatography showing that xylose prevails (12-14 %) in the non-cellulosic fraction of insoluble cell walls from mesocarp, indicating predominance with cellulose, of xilan-type polysaccharides in mango flesh. Water insoluble AIR (WAIR) was incubated with commercial preparations, characterized for their main enzymatic activities and comprising balanced proportion of pectinases and cellulases with other different secondary activities. At equivalent 500 µl per kilogram of purée and at 45°C, solubilisation rates of uronids and neutral sugars reach respectively 100 and 90% only when xylanase activities were present. Then, a commercial enzyme preparation containing pectinases, cellulases and high xylanase activities was applied to native mango purée varying enzyme concentration and incubation time according to a central composite rotatable design. It was shown that percent of final suspended insoluble solids and Bostwick consistency could be considerably reduced in minutes, using a relatively low amount of enzyme preparation (150 l.L-1). Rheological properties of mango purées can be modulated easily according to incubation time and concentration of enzymatic solution to fit the needs of food industries.
Keywords: Mango, Cell-Wall Polysaccharides, Enzymes, Bostwick Consistency
Cite this paper: Beatriz Brito , Fabrice Vaillant , "Enzymatic Liquefaction of Cell-Walls from Kent and Tommy Atkins Mango Fruits", International Journal of Food Science and Nutrition Engineering, Vol. 2 No. 5, 2012, pp. 76-84. doi: 10.5923/j.food.20120205.02.
|
|
|
|
Figure 3. Contour plot of responses on mango puree from “Tommy Atkins” (-----) and “Kent”(____) after incubation at 45 ºC with Rapidase Pomaliq®: a) % SIS; b) consistency (cm.min-1) |
[1] | FAO, Medium-term prospects for agricultural commodities. In FAO Corporate document repository, Department, E. a. S. D., Ed. 2010. |
[2] | Yimyong, S.; Datsenka, T. U.; Handa, A. K.; Seraypheap, K., Hot Water Treatment Delays Ripening-associated Metabolic Shift in 'Okrong' Mango Fruit during Storage. J. Am. Soc. Hortic. Sci. 2011, 136 (6), 441-451. |
[3] | Sreenath, H. K.; Sudarshana-krishna, K. R.; Santhanam, K., Enzymatic liquefaction of some varieties of mango pulp. Lebensmittel-Wissenschaft und Technologie 1995, 28, 196- 200. |
[4] | Srivastava, J. S., Mango processing industries- a scenario. Indian Food Packer 1998, Nov-Dec, 43-51. |
[5] | Gourge, C. M. P.; Champ, M. M. J.; Lozano, Y.; Delfort-Laval, J., Dietary fibre from mango by-products: characterization and hypoglicemic effects determined by in vitro methods. Journal of Agricultural and Food Chemistry 1992, 40, 1864-1868. |
[6] | Vergara-Valencia, N.; Granados-Perez, E.; Agama-Acevedo, E.; Tovar, J.; Ruales, J.; Bello-Perez, L. A., Fibre concentrate from mango fruit: Characterization, associated antioxidant capacity and application as a bakery product ingredient. Lwt-Food Sci Technol 2007, 40 (4), 722-729. |
[7] | Yashoda, H. M.; Prabha, T. N.; Tharanathan, R. N., Mango ripening-chemical and structural characterization of pectic and hemicellulosic polysaccharides. Carbohyd Res 2005, 340 (7), 1335-1342. |
[8] | Yashoda, H. M.; Prabha, T. N.; Tharanathan, R. N., Mango ripening: changes in cell wall constituents in relation to textural softening. J Sci Food Agr 2006, 86 (5), 713-721. |
[9] | Muda, P.; Seymour, G. B.; Errington, N.; Tucker, G. A., Compositional changes in cell wall polymers during mango fruit ripening. Carbohyd Polym 1995, 26 (4), 255-260. |
[10] | Mitcham, E.; McDonald, R., Cell wall modification during ripening of "Keitt" and " Tommy Atkins" mango fruit. Journal of the American Society for Horticultural Science. 1992, 117 (6), 919-924. |
[11] | Kratchanova; M; Benemou; C; Kratchanov; C, G., On the pectic substances of mango fruits. Elsevier: Kidlington, ROYAUME-UNI, 1991; Vol. 15. |
[12] | Chauhan, S.; Tyagy, S.; Singh, D., Pectinolytic liquefaction of apricot, plum and mango pulps for juice extraction. International Journal of Food Properties 2001, 4 (1), 103-109. |
[13] | Olle, D.; Baron, A.; Lozano, Y.; Brillouet, J., Enzymatic degradation of cell wall polysaccharides from mango (Mangifera indica L.) puree. Journal of Agricultural and Food Chemistry 2000, 48, 2713-2716. |
[14] | Rastogi, N. K.; Rashimi, K. R., Optimisation of enzymatic liquefaction of mango pulp by response surface methodology. Eur Food Res Technol 1999, 209 (1), 57-62. |
[15] | Yashoda, H. M.; Prabha, T. N.; Tharanathan, R. N., Mango ripening - Role of carbohydrases in tissue softening. Food Chem. 2007, 102 (3), 691-698. |
[16] | Singh, N. I.; Dhuique-Mayer, C.; Lozano, Y., Physico-chemical changes during enzymatic liquefaction of mango pulp (cv. Keitt). J. Food Process Preserv. 2000, 24 (1), 73-85. |
[17] | Perona, P., Bostwick degree and rherological Properties: An up-to-date viewpoint. Apllied rheology 2005, 15, 218-229. |
[18] | Brillouet, J. M.; Rouau, X.; Hoebler, C.; Barry, J. L.; Carre, B.; Lorta, E., A new method for determination of insoluble cell walls and soluble nonstarchy polysaccharides from plant materials. Journal of Agricultural and Food Chemistry 1988, 36, 969-979. |
[19] | AOAC, Fruits and fruit products. In Official Methods of Analysis of the Association of Official Analytical Chemists, Helrich, K., Ed. Association of Official Analytical Chemists: Arlington, USA, 2005; Vol. 2. |
[20] | Voragen, A. G. J.; Timmers, J. P. J.; Linssen, J. P. H.; Schols, H. A.; Pilnik, W., Methods of analysis for cell wall polysaccharides of fruits and vegetables. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung 1983, 177, 251-256. |
[21] | Effland, M. J., Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 1977, 60, 143-144. |
[22] | Harris, P. J.; Henry, R. J.; Blakeney, A. B.; Stone, B. A., An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohyd Res 1984, 127, 59-73. |
[23] | Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Robers, P. A.; Smith, F., Colorimetric method for sugars and related substances. Analytical Chemistry 1956, 28 (3), 350-356. |
[24] | Blumenkrantz, N.; Asboe-Hansen, G., New method for quantitative determination of uronic acids. Analitical Biochemistry 1973, 54, 484-489. |
[25] | Batey, I. L., Starch analysis using thermostable a-amylase. Starch 1982, 34, 125-128. |
[26] | Klavons, J. A.; Bennet, R. D., Determination of methanol using alcohol oxydase and its application to methyl ester content of pectins. Journal of Agricultural and Food Chemistry 1986, 34, 597-599. |
[27] | Brito, B.; Rodriguez, M.; Samaniego, I.; Jaramillo, M. I.; Vaillant, F., Characterising polysaccharides in cherimoya (Annona cherimola Mill.) puree and their enzymatic liquefaction. Eur Food Res Technol 2008, 226 (3), 355-361. |
[28] | Olle, D.; Lozano, Y.; Brillouet, J., Isolation and characterization of soluble polysaccharides and insoluble cell wall material of the pulp of four mango (Mangifera indica L.). Journal of Agricultural and Food Chemistry 1996, 44, 2658-2662. |
[29] | Prasanna, V.; Prabha, T. N.; Tharanathan, R. N., Pectic polysaccharides of mango (Mangifera indica L): structural studies. J Sci Food Agr 2004, 84 (13), 1731-1735. |
[30] | Vaillant, F.; Millan, A.; Millan, P.; Dornier, M.; Decloux, M.; Reynes, M., Co-immobilized pectinlyase and endocellulase on chitin and nylon supports. Process Biochemistry 2000, 35, 989-996. |