[1] | A. Jäger-Waldau, PV Status Report 2003, 2003, European Commission, EUR 20850 EN. |
[2] | Jenna Eddy, SD EPSCoR Intern 2007. |
[3] | Service R. Outlook brightens for plastic solar cells. Science 2011; 332(6027): 293. |
[4] | Miyake K, Uetani Y, Seike T, Kato T, Oya K, Yoshimura K, Ohnishi T. Development of next generation organic solar cell.R&D Report, “SUMITOMO KAGAKU”, Vol. 2010–1, 2010. |
[5] | G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater., 2009, 21, 1323. |
[6] | Haiying Wan, "Dye Sensitized Solar Cells", University of Alabama Department of Chemistry, p. 3. |
[7] | "Dye-Sensitized vs. Thin Film Solar Cells", European Institute for Energy Research, 30 June 2006. |
[8] | Pulfrey, L.D. (1978). Photovoltaic Power Generation. New York: Van Nostrand Reinhold Co. ISBN 9780442266400. |
[9] | Peter Gevorkian (1 August 2007). Sustainable energy systems engineering: the complete green building design resource. McGraw-Hill Professional. pp. 498–. ISBN 978 – 0 – 07 – 147359 -0. Retrieved 29 February 2012. |
[10] | Kearns D., Calvin M. J.Chem.Phys. 29, 950-951 (1958) . |
[11] | Ghosh A.K. et al. J.Appl.Phys. 45,230-236 (1974). |
[12] | Barnham, K. W. J.; Duggan, G. (1990). "A new approach to high-efficiency multi-band-gap solar cells". Journal of Applied Physics 67: 3490. Bibcode:1990JAP....67.3490B. doi:10.1063/1.345339. |
[13] | A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen and P. W. M. Blom, Adv. Funct. Mater., 2006, 16, 1897. |
[14] | Juan Bisquert, "Dye-sensitized solar cells", Departament de Física, Universitat Jaume I . |
[15] | "Dye Solar Cell Assembly Instructions". Solaronix. Retrieved 2007-05-22. |
[16] | McGehee D.G., Topinka M.A. Nature Mater. 5, 675-676 (2006) . |
[17] | Nelson J. Current Opinion in Solid State and Materials Science 6, 87-95 (2002). |
[18] | Halls J.J.M., Friend R.H. In: Archer M.D., Hill R.D. editors, Clean electricity from photovoltaics, London: Imperial College Press, 377-445 (2001). |
[19] | Blom P.W.M., Valentin D. M., L. Jan Anton Koster, and Denis E. Markov, Adv. Mater. ….(2007). |
[20] | B. O’Regan , M. Grtzel,Nature1991, 353, 737–740. |
[21] | I. Kaiser, K. Ernst, C.-H. Fischer, R. Kçnenkamp, C. Rost, I. Sieber, M. Lux. |
[22] | A. Colsmann, J. Junge, C. Kayser and U. Lemmer, Appl. Phys. Lett., 2006, 89, 203506. |
[23] | Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives. 2006; 114(2): 165-172. |
[24] | Jin Young Kim, et al., Science 317 (2007), 222. |
[25] | Hadipour A., de Boer B., Wildeman J., Kooistra F.B., Hummelen J.C., Turbiez M.G.R., Wienk M.M., |
[26] | Gilot J., Wienk M.M., Janssen R.A.J., Appl. Phys. Lett., 90, 143512 (2007). |
[27] | Hans-Jürgen Prall, TANDEM SOLAR CELLS, PhD thesis, Johannes Kepler Universität Linz (2005). Janssen R.A.J. and Blom P.W.M. Adv. Funct. Mater. 16 ( 2006), 1897. |
[28] | Basic Research Needs for Solar Energy Utilization, U.S. Department of Energy Office of Basic Energy Sciences, 2005. |
[29] | Ecole Polytechnique Fédérale de Lausanne, "New Efficiency Benchmark For Dye-sensitized Solar Cells", Science Daily, 3 November 2008. |
[30] | Tributsch, H (2004). "Dye sensitization solar cells: a critical assessment of the learning curve". Coordination Chemistry Reviews 248 (13–14): 1511. doi:10.1016/j.ccr.2004.05.030. |
[31] | H. Sargent, E. (2005). "Infrared Quantum Dots". Advanced Materials 17: 515. doi:10.1002/adma.200401552. |
[32] | Michalet et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307(5709): 538-544. |
[33] | Weng, et al. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Current medicinal chemistry. 2006; 13: 897-909. |
[34] | Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives. 2006; 114(2): 165-172. |
[35] | Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996; 271: 933-937. |
[36] | "Photovoltaic Cell Conversion Efficiency". U.S. Department of Energy. Retrieved 19 May 2012. |
[37] | ASTM G 173-03, "Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface," ASTM International, 2003. |
[38] | "Solar Spectral Irradiance: Air Mass 1.5". National Renewable Energy Laboratory. Retrieved 2007-12-12. |
[39] | American Chemical Society, "Ultrathin, Dye-sensitized Solar Cells Called Most Efficient To Date", Science Daily, 20 September 2006. |
[40] | Gao, F; Wang, Y; Zhang, J; Shi, D; Wang, M; Humphry-Baker, R; Wang, P; Zakeeruddin, Sm; Grätzel, M (2008). "A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye - sensitized solar cell". Chemical communications (23): 2635–7. doi:10.1039/b802909a. PMID 18535691. |
[41] | Yella, A; Lee, HW; Tsao, HN; Yi, C; Chandiran, AK; Nazeeruddin, MK; Diau, EW-D; Yeh, C-Y; Zakeeruddin, SM; Grätzel, M (2011). "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency". Science (6056): 629634.Bibcode: 2011Sci...334.. 629Y.doi:10.1126/science. 1209688. |
[42] | Konarka Power Plastic reaches 8.3% efficiency. pv- tech.org. Retrieved on 2011-05-07. |
[43] | Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.;Chou, Kang Wei; Amassian, Aram; Sargent, Edward H. (2012). "Hybrid passivated colloidal quantum dot solids". Nature Nanotechnology 7: 577–582. doi:10.1038/ nnano.2012.127. |
[44] | J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 2007, 317, 222. |
[45] | S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li and Y. Yang, Adv. Mater., 2010, 22, 380. |
[46] | J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li and Y. Yang, manuscript submitted and under revision. |
[47] | Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)). |
[48] | Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841 6851. |
[49] | Yella, A.; Lee, H.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C. Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with Cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634. |
[50] | Ding, I.; Melas-Kyriazi, J.; Cevey-Ha, N.; Chittibabu, K.G.; Zakeeruddin, S.M.; Grätzel, M.; McGehee, M.D. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading. Organ. Electron. 2010, 11, 1217–1222. |
[51] | Xu, C.; Wu, J.; Desai, U.V.; Gao, D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett. 2012, 12, 2420–2424. |
[52] | Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, M.K.; Grätzel, M. Tris (2-(1H- pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 18042–18045. |
[53] | Dou, L.; You, J.; Yang, J.; Chen, C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photon. 2012, 6, 180–185. |
[54] | Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153–161. |
[55] | Salant, A.; Shalom, M.; Tachan, Z.; Buhbut, S.; Zaban, A.; Banin, U. Quantum rod-sensitized solar cell: Nanocrystal shape effect on the photovoltaic properties. Nano Lett. 2012, 12, 2095–2100. |
[56] | Shu, T.; Zhou, Z.; Wang, H.; Liu, G.; Xiang, P.; Rong, Y.; Han, H.; Zhao, Y. Efficient quantum dot- sensitized solar cell with tunable energy band CdSexS(1−x) quantum dots. J. Mater. Chem. 2012, 22, 10525–10529. |
[57] | Toyoda, T.; Oshikane, K.; Li, D.; Luo, Y.; Meng, Q.; Shen, Q. Photoacoustic and photoelectrochemical current spectra of combined Cds/Cdse quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics. J. Appl. Phys. 2010, 108, 114304. |
[58] | Hossain, M.A.; Jennings, J.R.; Koh, Z.Y.; Wang, Q. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 2011,5, 3172–3181. |
[59] | Yang, Z.; Chen, C.; Liu, C.; Li, C.; Chang, H. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Adv. Energy Mater. 2011, 1, 259–264. |
[60] | Santra, P.K.; Kamat, P.V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511. |
[61] | Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, J.; Zhong, X. highly efficient inverted type-I CdS/CdSe core/shell structure qd-sensitized solar cells. ACS Nano 2012, 6, 3982–3991. |
[62] | Zhang, H.; Cheng, K.; Hou, Y.M.; Fang, Z.; Pan, Z.X.; Wu, W.J.; Hua, J.L.; Zhong, X.H. Efficient CdSe quantum dot- sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 2012, 48, 11235–11237. |
[63] | Benehkohal, N.P.; Gonzalez-Pedro, V.; Boix, P.P.; Chavhan, S.; Tena-Zaera, R.; Demopoulos, G.P.; Mora-Sero, I. Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J. Phys. Chem. C 2012, 116,16391–16397. |
[64] | Ma, W.; Luther, J.M.; Zheng, H.; Wu, Y.; Alivisatos, A.P. Photovoltaic devices employing ternary PbS(x)Se(1−x) nanocrystals. Nano Lett. 2009, 9, 1699–1703. |
[65] | Wang, X.; Koleilat, G.I.; Tang, J.; Liu, H.; Kramer, I.J.; Debnath, R.; Brzozowski, L.; Barkhouse, D.A.R.; Levina, L.; Hoogland, S.; et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photon 2011, 5, 480–484. |
[66] | Ma, W.; Swisher, S.L.; Ewers, T.; Engel, J.; Ferry, V.E.; Atwater, H.A.; Alivisatos, A.P. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 2011, 5, 8140–8147. |
[67] | Etgar, L.; Zhang, W.; Gabriel, S.; Hickey, S.G.; Nazeeruddin, M.K.; Eychmueller, A.; Liu, B.; Grätzel. M. High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets. Adv. Mater.2012, 24, 2202–2206. |
[68] | Pattantyus-Abraham, A.G.; Kramer, I.J.; Barkhouse, A.R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M.K.; Grätzel, M.; et al. Depleted- heterojunction colloidal quantum dot solar cells. Acs Nano 2010, 4, 3374–3380. |
[69] | Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. |
[70] | Ning, Z.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X.; Zhitomirsky, D.; Sargent, E.W. All-inorganic colloidal quantum dots photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24,6295–6299. |
[71] | Barcelo, I.; Campina, J.M.; Lana-Villarreal, T.; Gomez, R. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Phys. Chem. Chem. Phys. 2012, 14, 5801– 5807. |
[72] | Lee, H.; Leventis, H.C.; Moon, S.; Chen, P.; Ito, S.; Haque, S.A.; Torres, T.; Nueesch, F.; Geiger, T.; Zakeeruddin, S.M.; et al. PbS and CdS quantum dot-sensitized solid-state solar cells: “Old concepts, new results”. Adv. Funct. Mater. 2009, 19, 2735–2742. |
[73] | Yu, Z.; Zhang, Q.; Qin, D.; Luo, Y.; Li, D.; Shen, Q.; Toyoda, T.; Meng, Q. Highly efficient quasi-solid-state quantum-dot- sensitized solar cell based on hydrogel electrolytes. Electrochem. Commun. 2010, 12, 1776– 1779. |
[74] | Karageorgopoulos, D.; Stathatos, E.; Vitoratos, E. Thin ZnO nanocrystalline films for efficientquasi-solid state electrolyte quantum dot sensitized solar cells. J. Power Sources 2012, 219,9–15. |
[75] | Tata Steel and Dyesol produce world’s largest dye sensitised photovoltaic module. Tatasteeleurope.com (2011-06-10). Retrieved on 2011-07-26. |
[76] | Taking Solar Technology Up a Notch (Northwestern University, Wednesday May 23rd 2012) |
[77] | Jørgensen, M., K. Norrman, and F.C. Krebs (2008). "Stability/degradation of polymer solar cells". Solar Energy Materials and Solar Cells 92 (7): 686. doi: 10.1016/ j.solmat. 2008.01.005. |
[78] | Po, Riccardo; Carbonera, Chiara; Bernardi, Andrea; Tinti, Francesca; Camaioni, Nadia (2012). "Polymer and carbon based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area". Solar Energy Materials and Solar Cells 100: 97. doi:10.1016/j.solmat. 2011.12.022. |
[79] | Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. (2006). Advanced Materials 18 (6): 789.doi:10.1002/adma. 200501717. |
[80] | Dou, Letian; You, Jingbi; Yang, Jun; Chen, Chun-Chao; He, Youjun; Murase, Seiichiro; Moriarty, Tom; Emery, Keith et al. (2012). "Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer". Nature Photonics 6 (3): 180. Bibcode :2012NaPho...6..180D. doi: 10.1038/nphoton. 2011. 356. |
[81] | Kromkout, W.W. (2012-02-13) UCLA Newsroom. |
[82] | Shaheen, S.E.; Ginley, D.S.; Jabbour, G.E. (2005). “Organic-Based Photovoltaics: Toward Low-Cost Power Generation.” MRS Bulletin, 30, 1, 10-15. |
[83] | Li B. et al. Solar Energy Materials & Solar Cells 90, 549 - 573 (2006) |
[84] | D.S. Ginger and N.C. Greenham, (1999). "Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals". Phys. Review B 59: 10622. Bibcode: 1999PhRvB ..5910622G.doi:10.1103 /PhysRevB.59.10622. |
[85] | Ilan Gur, Neil A. Fromer, Michael L. Geier, and A. Paul Alivisatos, (2005). "Air-Stable All-Inorganic Nanocrystal Solar Cell Processed from Solution". Science 310 (5745): 462–465. Bibcode:2005 Sci...310..462 G. doi:10.1126/ science. 1117908. PMID 16239470. |
[86] | Quantum Dots May Boost Photovoltaic Efficiency To 65% |
[87] | Kramer, I. J. & Sargent, E. H. ACS Nano 5, 8506–8514 (2011). |
[88] | Tang, J. et al. Nature Mater. 10, 765–771 (2011). |
[89] | Talapin, D. V. & Murray, C. B. Science 310, 86–89 (2005). |
[90] | Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Nature Nanotechnol. 6, 348–352 (2011). |
[91] | ‘Solarmer Energy Inc. breaks psychological barrier with 8.13% OPV efficiency’,http://www. solarmer. com/news.php. |
[92] | ‘Heliatek and IAPP achieve production-relevant efficiency record for organic photovoltaic cells’,http://www.heliatek.com/index.php? page¼news. |
[93] | L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu and Y. Yang, ACS Nano, 2010. |
[94] | Husser, P., Watt, G., & Kaizuka, I. Proceedings 17 17th International PVSEC 2007, 1110-1113. |
[95] | Honda, J. Proceedings 17 17th International PVSEC 2007, 114. |
[96] | Wortmann, D. Proceedings 17th International PVSEC 2007, 120. |
[97] | European commissions. http://ec.europa.eu/dgs/jrc/index.cfm. |