[1] | Abdul Hayee, M. (2012). Characterization and utilization of agroforestryresidues as energy source in Brazil. |
[2] | Acquah, G. E., Via, B. K., Fasina, O. O., Adhikari, S., Billor, N., & Eckhardt, L. G. (2017). Chemometric modeling of thermogravimetric data for the compositional analysis of forest biomass. PloS one, 12(3), e0172999. |
[3] | Adeyemi, T., & Idowu, O. (2017). Biochar: promoting crop yield, improving soil fertility, mitigating climate change and restoring polluted soils. World News of Natural Sciences(8), 27-36. |
[4] | Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource technology, 131, 374-379. |
[5] | Aller, D., Bakshi, S., & Laird, D. A. (2017). Modified method for proximate analysis of biochars. Journal of analytical and applied pyrolysis, 124, 335-342. |
[6] | Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.-Y., Ok, Y. S., & Vithanage, M. (2017). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental geochemistry and health, 39, 391-401. |
[7] | Budai, A., Zimmerman, A., Cowie, A., Webber, J., Singh, B., Glaser, B., . . . Lehmann, J. (2013). Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability. International biochar initiative, 20. |
[8] | Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428. |
[9] | Chen, J., Wang, P., Ding, L., Yu, T., Leng, S., Chen, J., . . . Li, J. (2021). The comparison study of multiple biochar stability assessment methods. Journal of analytical and applied pyrolysis, 156, 105070. |
[10] | Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy, 5(2), 122-131. |
[11] | Definition, P. (2015). Specification Standards: Standardized Product Defini-tion and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards): Version. |
[12] | Di Stasi, C., Greco, G., Canevesi, R. L., Izquierdo, M. T., Fierro, V., Celzard, A., . . . Manyà, J. J. (2021). Influence of activation conditions on textural properties and performance of activated biochars for pyrolysis vapors upgrading. Fuel, 289, 119759. |
[13] | Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. d., Melo, L. C., Magriotis, Z. M., & Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS one, 12(5), e0176884. |
[14] | Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews, 15(8), 3539-3551. doi:https://doi.org/10.1016/j.rser.2011.05.010 |
[15] | Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PloS one, 9(12), e113888. |
[16] | Gérard, J., Paradis, S., & Thibaut, B. (2019). Survey on the chemical composition of several tropical wood species. Bois et Forêts des Tropiques, 342. |
[17] | Hu, Q., Shao, J., Yang, H., Yao, D., Wang, X., & Chen, H. (2015). Effects of binders on the properties of bio-char pellets. Applied Energy, 157, 508-516. |
[18] | Initiatve, I. B. (2015). Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil. |
[19] | Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., . . . Spokas, K. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421-438. |
[20] | Klasson, K. T. (2017). Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy, 96, 50-58. |
[21] | Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction Biochar for environmental management (pp. 1-13): Routledge. |
[22] | Leng, L., Huang, H., Li, H., Li, J., & Zhou, W. (2019). Biochar stability assessment methods: a review. Science of The Total Environment, 647, 210-222. |
[23] | Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890-902. |
[24] | Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3, 255-281. |
[25] | Maaz, T. M., Hockaday, W. C., & Deenik, J. L. (2021). Biochar volatile matter and feedstock effects on soil nitrogen mineralization and soil fungal colonization. Sustainability, 13(4), 2018. |
[26] | Meyer, S., Genesio, L., Vogel, I., Schmidt, H.-P., Soja, G., Someus, E., . . . Glaser, B. (2017). Biochar standardization and legislation harmonization. Journal of Environmental Engineering and Landscape Management, 25(2), 175-191. |
[27] | Mukome, F. N., Zhang, X., Silva, L. C., Six, J., & Parikh, S. J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of agricultural and food chemistry, 61(9), 2196-2204. |
[28] | Muradov, N., Fidalgo, B., Gujar, A. C., Garceau, N., & Ali, T. (2012). Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming. Biomass and Bioenergy, 42, 123-131. |
[29] | O'Laughlin, J., & McElligott, K. (2009). Biochar for environmental management: science and technology, Johannes Lehmann, Stephen M. Joseph (Eds.), Earthscan, London UK (2009), 448 p: Elsevier. |
[30] | Ogunsola, O., Adeleke, O., & Aruna, A. (2018). Wood fuel analysis of some selected wood species within Ibadan. Paper presented at the IOP Conference Series: Earth and Environmental Science. |
[31] | Ok, Y. S., Uchimiya, S. M., Chang, S. X., & Bolan, N. (2015). Biochar: Production, characterization, and applications: CRC press. |
[32] | Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013). Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 65, 287-293. |
[33] | Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: a sustainable approach for improving plant growth and soil properties. Biochar-an imperative amendment for soil and the environment, 1-17. |
[34] | Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental science & technology, 44(2), 827-833. |
[35] | Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Gcb Bioenergy, 5(2), 104-115. |
[36] | Saletnik, B., Zagula, G., Bajcar, M., Czernicka, M., & Puchalski, C. (2018). Biochar and biomass ash as a soil ameliorant: The effect on selected soil properties and yield of giant miscanthus (Miscanthus x giganteus). Energies, 11(10), 2535. |
[37] | Shackley, S., Carter, S., Sims, K., & Sohi, S. (2011). Expert perceptions of the role of biochar as a carbon abatement option with ancillary agronomic and soil-related benefits. Energy & environment, 22(3), 167-187. |
[38] | Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar: a guide to analytical methods: Csiro Publishing. |
[39] | Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon management, 1(2), 289-303. |
[40] | Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A.-M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37-48. |
[41] | Tag, A. T., Duman, G., Ucar, S., & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of analytical and applied pyrolysis, 120, 200-206. |
[42] | Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215. |
[43] | Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099(162), 2183-2207. |
[44] | Waliszewska, B., Mleczek, M., Zborowska, M., Goliński, P., Rutkowski, P., & Szentner, K. (2019). Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose, 26, 6303-6315. |
[45] | Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257-262. |
[46] | Zajac, G., Szyszlak-Bargłowicz, J., Gołebiowski, W., & Szczepanik, M. (2018). Chemical Characteristics of Biomass Ashes. Energies. 11 (11): 2-15. |
[47] | Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136-146. |
[48] | Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., . . . Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472-8483. |
[49] | Zhao, S.-X., Ta, N., & Wang, X.-D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. |