[1] | Agegnehu, G., Srivastava, A.K., & Bird, M.I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170. DOI:10.1016/J.APSOIL.2017.06.008. |
[2] | Ahmad, N. (1989). Farming systems for low fertility acid soils. CTA Seminar Proceedings, Keytone Address, (pp. 12-31). |
[3] | Ahmad, N. (2011). Soils of the Caribbean. Kingston: Ian Randle Publishers. |
[4] | Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource technology, 214, 836-851. https://doi.org/10.1016/j.biortech.2016.05.057. |
[5] | Ajeng, A. A., Abdullah, R., Ling, T. C., Ismail, S., Lau, B. F., Ong, H. C., Chew, K. W., Show, P. L., & Chang, J. S. (2020). Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Opus.lib.uts.edu.au. https://opus.lib.uts.edu.au/handle/10453/144061. |
[6] | Akhtar, S.S., Andersen, M.N & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010. |
[7] | Antolleni, M., Siciliano, G., Turvani, M. E., & Rulli, M. C. (2015). Global investments in agricultural land and the role of the EU: Drivers, scope and potential impacts. Elsevier Land Use Policy, 98-111 https://doi.org/10.1016/j.landusepol.2015.04.007. |
[8] | Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J. R., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 9:1473, 9. https://doi.org/10.3389/fpls.2018.01473. |
[9] | Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G.E.D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. 575(7781), 109–118. https://doi.org/10.1038/s41586-019-1679-0. |
[10] | Bamdad, H., Papari, S., MacQuarrie, S., & Hawboldt, K. (2021). Study of surface heterogeneity and nitrogen functionalizing of biochars: Molecular modeling approach. Carbon, 171, 161–170. https://doi.org/10.1016/j.carbon.2020.08.062. |
[11] | Barbier, E. B. (2010). Poverty, development, and environment. Scopus Review, 635-660.Barbier, E. B. (2010). Poverty, development, and environment. Scopus Review, 635-660. |
[12] | Barbosa, J. Z., Motta, A. C. V., Corrêa, R. S., Muniz, A. W., Martins, G. C., Silva, L. D. C. R., ... & Broadley, M. R. (2020). Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma, 361, 114085. |
[13] | Batista, E. M., Shultz, J., Matos, T. T., Fornari, M. R., Ferreira, T. M., Szpoganicz, B., & Mangrich, A. S. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8(1), 1-9. DOI:10.1038/s41598-018-28794-z. |
[14] | Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. 159(12), 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023. |
[15] | Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13, 1-10. https://doi.org/10.1186/1475-2859-13-66. |
[16] | Bonanomi, G., Ippolito, F., Cesarano, G., Nanni, B., Lombardi, N., Rita, A., Saracino, A., & Scala, F. (2017). Biochar As Plant Growth Promoter: Better Off Alone or Mixed with Organic Amendments? Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01570. |
[17] | Bruckman, V. J., Varol, E. A., & Uzun, B. B. (Eds.). (2016). Biochar. Cambridge University Press. |
[18] | Cabrales H, E., López-Hernández, D & Toro, M. 2019. Effects of the inoculation with native Glomeromycota fungi and fertilization in the yield of maize in acid soils. In: Zúñiga D, Ormeño E and González-Andrés F (Eds.) Microbial probiotics for agricultural systems. Advances in agronomic use. Springer. 205-212. ISBN: 978-3-030-17596-2. |
[19] | Calvo, P., Nelson, L. M., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3–41. https://doi.org/10.1007/s11104-014-2131-8. |
[20] | Chia, C., Munroe, P., Joseph, S., & Lin, Y. (2010). Microscopic characterisation of synthetic Terra Preta. 48(7), 593–593. https://doi.org/10.1071/sr10012. |
[21] | Cluzeau, D., Guernion, M., Chaussod, R., Martin-Laurent, F., Villenave, C., Cortet, J., Ruiz-Camacho, N., Pernin, C., Mateille, T., Philippot, L., Bellido, A., Rougé, L., Arrouays, D., Bispo, A., & Pérès, G. (2012). Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types. 49, 63–72. https://doi.org/10.1016/j.ejsobi.2011.11.003. |
[22] | Dabral, S. N., Saxena, S. C., Choudhary, D.K; Bandyopadhyay, P., Sahoo, R.K; Tuteja, N; & Nath, M. (2020). Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis, 81(2), 139–148. https://doi.org/10.1007/s13199-020-00689-6. |
[23] | Dai, L., Tan, F., Li, H., Zhu, N., He, M., Qili, Z; Hu, G., Wang, L., & Zhao, J. (2017). Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. 198, 70–74. https://doi.org/10.1016/j.jenvman.2017.04.057. |
[24] | Dauber, J., Brown, C. P., Luísa, A., Finnan, J., Krasuska, E., Jens Ponitka, Styles, D., Thrän, D., Jan, Weih, M., & Zah, R. (2012). Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk, 7, 5–50. https://doi.org/10.3897/biorisk.7.3036. |
[25] | De Coninck, H., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W., Ford, J., Fuss, S., Hourcade, J. C., Ley, D., Mechler, R., Newman, P., Revokatova, A., Schultz, S., Steg, L., & Sugiyama, T. (2018). Strengthening and Implementing the Global Response. In Global warming of 1.5°C: Summary for policy makers (pp. 313-443). IPCC - The Intergovernmental Panel on Climate Change. |
[26] | Debnath, S., Rawat, D., Mukherjee, A.K; Adhikary, S; & Kundu, R. (2020). Applications and Constraints of Plant Beneficial Microorganisms in Agriculture. IntechOpen EBooks. https://doi.org/10.5772/intechopen.89190. |
[27] | Diatta, A. A., Fike, J. H., Battaglia, M. L., & Baig; M.B. (2020). Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences 13(14).DOI:10.1007/s12517-020-05586-2. |
[28] | Ducey, T. F., Novak, J. M., & Johnson, M. H. (2015). Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils. 5(4), 1060–1075. https://doi.org/10.3390/agriculture5041060. |
[29] | Duque, D. B., Ley, J., Samad, A., Antonielli, L., Sessitsch, A., & Compant, S. (2019). Beneficial Endophytic Bacteria-Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02888. |
[30] | El-Mageed, Taia A.; Semida, Wael M. (2015). Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agricultural Water Management, 159(C), 1–10. https://ideas.repec.org/a/eee/agiwat/v159y2015icp1-10.html. |
[31] | Fatnassi, I.C., Chiboub, M., Saadani, O., Jebara, M., & Jebara, S.H. (2015). Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Competes Rendus Biologies, 338(4), 241-254. https://doi.org/10.1016/j.crvi.2015.02.001. |
[32] | Ferguson, B. J., Mens, C., Hastwell, A. H., Zhang, M., Su, H., Jones, C. H., Chu, X., & Gresshoff, P. M. (2018). Legume nodulation: The host controls the party. Plant Cell and Environment, 42(1), 41–51. https://doi.org/10.1111/pce.13348. |
[33] | Fernando A.L; Costa, J., Barbosa, B., Monti, A., & Rettenmaier, N. (2018). Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass & Bioenergy, 111, 174–186. https://doi.org/10.1016/j.biombioe.2017.04.005. |
[34] | Fytili D, Zabaniotou A. (2018). Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Curr Sustain Renew Energy Rep. https://doi.org/10.1007/s4051 8-018-0109-5. |
[35] | Gao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Zhang, C., & Zeng, F. (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59180-3. |
[36] | Gelardi, D. L., & Parikh, S. J. (2021). Soils and Beyond: Optimizing Sustainability Opportunities for Biochar. Sustainability, 13(18), 10079–10079. https://doi.org/10.3390/su131810079. |
[37] | Glaser, B., & Birk, J.J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). 82, 39–51. https://doi.org/10.1016/j.gca.2010.11.029. |
[38] | Gorovtsov, A., Minkina, T., Mandzhieva, S., Perelomov, L., Soja, G., Zamulina L., Rajput, V. D., Sushkova, S., Mohan, D., & Yao, J. (2019). The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 42(8), 2495–2518. https://doi.org/10.1007/s10653-019-00412-5. |
[39] | Gough, C., & Cullimore, J. (2011). Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions. Molecular Plant-Microbe Interactions®, 24(8), 867–878. https://doi.org/10.1094/mpmi-01-11-0019. |
[40] | Grycova, B., Koutník, I., & Pryszcz, A. (2016). Pyrolysis process for the treatment of food waste. Bioresource Technology, 218, 1203–1207. https://doi.org/10.1016/j.biortech.2016.07.064. |
[41] | Guyana Lands and Surveys Commission. (2013). Guyana National Land Use Plan. Georgetown: Ministry of Natural Resources and Environment. |
[42] | Ha M, Bumguardner ML, Munster CL, Vietor DM, Capareda S, Palma MA, Provin T. (2010). Optimizing the logistics of a mobile fast pyrolysis system for sustainable bio-crude oil production. American Society of Agricultural and Biological Engineers. Annual international meeting. Pittsburgh, Pennsylvania, USA. |
[43] | Hailegnaw, N.S., Mercl, F., Pračke, K., Tlustos, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J Soils Sediments 19, 2405–2416 (2019). https://doi.org/10.1007/s11368-019-02264-z. |
[44] | Hansen, V., Hauggaard-Nielsen, H., Petersen, C. T., Mikkelsen, T. N., & Müller-Stöver, D. S. (2016). Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil and Tillage Research, 161, 1 – 9. https://doi.org/10.1016/j.still.2016.03.002. |
[45] | Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1 |
[46] | He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Shao, J., Wang, X., Xu, Z., Bai, S.H., Wallace, H. M., & Xu, C.-Y. (2017). Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. Gcb Bioenergy, 9(4), 743–755. https://doi.org/10.1111/gcbb.12376. |
[47] | Holder, N. L. (1995). Proposal for agricultural development of the Intermediate Savannahs of Guyana. Georgetown: Organization of American States. |
[48] | Hosseini, E., Zarei, M., Sepehri M., & Safarzadeh, S. (2022). Do bagasse biochar and microbial inoculants positively affect barley grain yield and nutrients, and microbial activity? Journal of Plant Nutrition, 45:4, 522-539, DOI: 10.1080/01904167.2021.1952229. |
[49] | Jatav, H.S; Singh, S.K; Jatav, S.S; Rajput, V. D; Parihar, M; Mahawer, S.K; Singhal, R. K; & Sukivtee. (2020). Importance of biochar in agriculture and its consequence. In Abdelhafez, A.A.; & Abbas, M.H.H. (Eds.), Applications of Biochar for Environmental Safety. |
[50] | Jatav, H.S., Rajput, V. D., Minkina, T., Singh, S.K., Chejara, S., Gorovtsov, A., Barakhov A., Bauer, T., Sushkova, S., Mandzhieva, S., Burachevskaya, M., & Kalinitchenko, V. (2021). Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability, 13(18), 10362–10362. https://doi.org/10.3390/su131810362. |
[51] | Jeffery S, Abalos D, Spokas KA, Verheijen FG. (2015) Biochar effects on crop yield. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management: Science, Technology and Implementation, 2nd edn. Routlege, London. |
[52] | Jeffery, S., Abalos, D., Prodana, M., Bastos, A., Willem, J., Hungate, B. A., & Frank. (2017). Biochar boosts tropical but not temperate crop yields. 12(5), 053001–053001. https://doi.org/10.1088/1748-9326/aa67bd. |
[53] | Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Peng, L., Zhang, J., Wong, M.H., Wang, M., Shan, S., & Christie, P. (2016). Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 320, 417–426. https://doi.org/10.1016/j.jhazmat.2016.08.050. |
[54] | Juriga, M., & Šimanský, V. (2019). Effects of Biochar and its Reapplication on Soil pH and Sorption Properties of Silt Loam Haplic Luvisol. Acta Horticulturae et Regiotecturae, 22(2), 65–70. https://doi.org/10.2478/ahr-2019-0012. |
[55] | Kapoor, A., Sharma, R., Kumar, A., & Swapana Sepehya. (2022). Biochar as a means to improve soil fertility and crop productivity: a review. Journal of Plant Nutrition, 45(15), 2380–2388. https://doi.org/10.1080/01904167.2022.2027980. |
[56] | Karimi, A., Abdolamir Moezzi, Mostafa Chorom, & Naeimeh Enayatizamir. (2020). Application of Biochar Changed the Status of Nutrients and Biological Activity in a Calcareous Soil. 20(2), 450–459. https://doi.org/10.1007/s42729-019-00129-5. |
[57] | Karunanayake, A. G., Todd, O., Crowley, M., & Mlsna, T. (2017). Lead and cadmium remediation using magnetized and non-magnetized biochar from Douglas fir. Chemical Engineering Journal, Volume 331, 480-491. https.//doi/org/10.1016/j.ceg.2017.08.124. |
[58] | Kauppinen, M., Saikkonen, K., Helander, M., Anna Maria Pirttilä, & Wäli, P. R. (2016). Epichloë grass endophytes in sustainable agriculture. 2(2). https://doi.org/10.1038/nplants.2015.224. |
[59] | Knoblauch, C., Priyadarshani, S., Haefele, S. M., Schröder, N., & Pfeiffer, E.-M. (2021). Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. https://doi.org/10.1111/ejss.13088. |
[60] | Kocsis, T., Ringer, M., & Biró, B. (2022). Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. Applied Sciences, 12(8), 4051–4051. https://doi.org/10.3390/app12084051. |
[61] | Kolton, M., Harel, Y.M., Pasternak, Z., Graber, E. R., Elad,, Y & Cytryn, E. (2011). Impact of Biochar Application to Soil on the Root-Associated Bacterial Community Structure of Fully Developed Greenhouse Pepper Plants. Applied and Environmental Microbiology, 77(14), 4924–4930. https://doi.org/10.1128/aem.00148-11. |
[62] | Kremen, C. & Merenlender, A. M. (2018). Landscapes that work for biodiversity and people. Science, 362. https://doi.org/10.1126/scien ce.aau6020. |
[63] | Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3465–3472. https://doi.org/10.1073/pnas.1100480108. |
[64] | Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. 270, 627–642. https://doi.org/10.1016/j.biortech.2018.09.030. |
[65] | Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bio-economy. Environmental Science: Global Food Security, 34-42. https://doi.org/10.1016/j.gfs.2015.10.00. |
[66] | Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J.-H., Wang, Q., Zhang, X., & Wu, X. (2018). Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. 6. https://doi.org/10.3389/fevo.2018.00064. |
[67] | Li, Y., Hu, S., Chen, J., Müller, K., Fu, W., Lin, Z., & Wang, H. (2017). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18(2), 546–563. https://doi.org/10.1007/s11368-017-1906-y. |
[68] | Lipper, L., Pingali, P., & Zurek, M. (2007). Less-Favoured Areas: Looking Beyond Agriculture Towards Ecosystem Services. 2007: Food and Agriculture Organisation (FAO). |
[69] | Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R & Paz-Ferreiro, J. (2013). Biochar's Effect on Crop Productivity and the Dependence on Experimental Conditions- A Meta-Analysis of Literature Data. Plant and Soil, 373 (1-2).DOI:10.1007/s11104-013-1806-x. |
[70] | Lopes A, Ayarza M, Thomas R (1999). In Guimarães E.P; Sanz J.I; Rao I.M; Amézquita MC, Amézquita E (Eds.) Agropastoral Systems in The Savannahs of Tropical Latin America: Lessons from the Agricultural Development of the Cerrados of Brazil. CIAT Publication No. 313. pp 9-30. |
[71] | Lopes A.S., Ayarza, M., and Thomas R.J. (2004). Managing and Conserving Acid Savannah Soils for Agricultural Development: Lessons from the Brazilian Cerrados. In E.P. Guimarães, J.I. Sanz, I.M. Rao, M.C. Amézquita, E. Amézquita and R.J. Thomas (eds) “Agropastoral Systems for the Tropical Savannas of Latin America”. CIAT-EMBRAPA, Publication 338, Cali, Colombia. Chapter 2: 12-34. |
[72] | López-Hernández, D., García-Guadilla, M.P., Torres, F., Chacón, P., & Paoletti, M.G. (1997). Identification, characterization and preliminary evaluation of Venezuelan Amazonian production systems in Puerto Ayacucho savanna-forest ecotone. Interciencia 22: 307-314. |
[73] | López-Hernández, D., Hernández, R., & Brossard, M. (2005). Recent use history of South American savannah land. Case studies in the Orinoco savannas. Interciencia. 30. 623-630. |
[74] | Malik, Z., Z. Shah and M. Tariq. (2019). Biochar improves viability of arbuscular mycorrhizal fungi (AMF) in soil and roots of wheat (Triticum aestivum) and maize (Zea mays L.) under various cropping systems. Sarhad Journal of Agriculture, 35(3): 834-846. http://dx.doi.org/10.17582/journal.sja/2019/35.3.834.846. |
[75] | Marazza, D., Pesce, S., Greggio, N., Francesco Primo Vaccari, Enrico Balugani, & Alessandro Buscaroli. (2022). The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework. Agriculture, 12(8), 1244–1244. https://doi.org/10.3390/agriculture12081244. |
[76] | Maroušek, J., Strunecký, O., & Stehel, V. (2019). Biochar farming: defining economically perspective applications. Clean Technologies and Environmental 21(7). DOI:10.1007/s10098-019-01728-7. |
[77] | Masud, M. M., Baquy, M., Akhter, S., Sen, R., Barman, A., & Khatun. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, 110865–110865. https://doi.org/10.1016/j.ecoenv.2020.110865. |
[78] | McHenry, M.P. (2009) Agricultural bio -char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture, Ecosystems & Environment, 129 (1 -3). pp. 1 -7. |
[79] | Mohanram, S & Kumar, P. (2019). Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. 69(4), 307–320. https://doi.org/10.1007/s13213-019-01448-9. |
[80] | Mora, E., López-Hernández, D & Toro, M. 2019. Arbuscular mycorrhiza and PGPR applications in tropical savannas. 169-178. In: Zúñiga D, Ormeño E and González Andrés F (Eds.) Microbial probiotics for agricultural systems. Advances in agronomic use. Springer. ISBN: 978-3-030-17596-2. |
[81] | Nair, V. D., Nair, R., Dari, B., Freitas, B., Chatterjee, N., & Pinheiro, F. M. (2017). Biochar in the Agroecosystem–Climate-Change–Sustainability Nexus. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02051. |
[82] | Narro, L., Pandey, S. León, A.J. Pérez C. and Salazar. F. (2004). Maize varieties for acid soils. In E.P. Guimarães, J.I. Sanz, I.M. Rao, M.C. Amézquita, E. Amézquita and R.J. Thomas (eds) “Agropastoral Systems for the Tropical Savannas of Latin America”. CIAT-EMBRAPA, Publication 338, Cali, Colombia. Chapter 1: 1-9. |
[83] | Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. 2019, 1–9. https://doi.org/10.1155/2019/5794869. |
[84] | Ogawa, M., & Okimori. Y. (2010). Pioneering works in biochar research, Japan. 48(7), 489–489. https://doi.org/10.1071/sr10006. |
[85] | Oladele, S., Adeyemo, A., Awodun, M., Ajayi, A. E., & Fasina, A.S. (2019). Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. 8(3), 295–308. https://doi.org/10.1007/s40093-019-0251-0. |
[86] | Oldroyd, G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Review Microbiology, 252–263. doi: 10.1038/nrmicro2990. |
[87] | Oliveira, F. R., Patel, K.A., Jin, Y., Adhikari, S., Lu, H., & Khanal, S.K. (2017). Environmental application of biochar: Current status and perspectives. 246, 110–122. https://doi.org/10.1016/j.biortech.2017.08.122. |
[88] | Palansooriya, K.N., Wong, J., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Kim, K. H. (2019). Response of microbial communities to biochar-amended soils: a critical review. 1(1), 3–22. https://doi.org/10.1007/s42773-019-00009-2. |
[89] | Priyadharsini, P., & Muthukumar, T. (2016). Interactions between Arbuscular Mycorrhizal Fungi and Potassium-Solubilizing Microorganisms on Agricultural Productivity. pp. 111–125, https://doi.org/10.1007/978-81-322-2776-2_8. |
[90] | Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and the global food security. Chemosphere, 227, 345-365. DOI:10.1016/j.chemosphere.2019.03.170. |
[91] | Rady, M. M., Semida, W. M., Hemida, K. A., & Abdelhamid, M. T. (2016). The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. 5(4), 311–321. https://doi.org/10.1007/s40093-016-0141-7. |
[92] | Rajakumar, R., and J. Sankar. (2016). Biochar for sustainable agriculture – A review. International Journal of Applied and Pure Science and Agriculture 2:173–84. |
[93] | Rasouli-Sadaghiani, M., Danesh, R., Moradi, N., & Barin, M. (2021). The effect of compost, biochar and bio-inoculant on enzymatic activity and some soil microbial indices. Journal of Sol Biology, 9(2), 141–154. https://doi.org/10.22092/sbj.2021.352967.209. |
[94] | Raven, K. P., and Loeppert, R.H. (1997),“Trace Element Composition of Fertilizers and Soil Amendments.” Journal of Environmental Quality, vol. 26, no. 2 pp. 551–557. https://doi.org/10.2134/jeq1997.00472425002600020028x. |
[95] | Ray, P., Lakshmanan, V., Labbé, J., & Craven, K. D. (2020). Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.622926. |
[96] | Ren, H., Huang, B., Fernández-García, V., Miesel, J. R., Li, Y., & Lv. C. (2020). Biochar and Rhizobacteria Amendments Improve Several Soil Properties and Bacterial Diversity. Microorganisms, 8(4), 502–502. https://doi.org/10.3390/microorganisms8040502. |
[97] | Riascos, M. S., & Heera, T. (2020). Impact of biochar use on agricultural production and climate change. A review. Agronomía Colombiana, 38(3), 367-381. DOI:10.15446/agron.colomb.v38n3.87398 |
[98] | Rizwan, M., Ali, S., Abbas, T., Adrees, M., Ibrahim, M., Abbas, F., Qayyum, M., & Nawaz, R. (2018). Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 206, 676–683. https://doi.org/10.1016/j.jenvman.2017.10.035 |
[99] | Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V.P. (2018). Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. 77, 21–31. https://doi.org/10.1016/j.tifs.2018.05.007. |
[100] | Santana, K.V.R., Kathamania, A., & Apolônio, F., & Wisniewski, A. (2020). Valorization of cattle manure by thermoconversion process in a rotary kiln reactor to produce environmentally friendly products. BioEnergy Research. DOI:10.1007/s12155-019-10047-0. |
[101] | Schröder, P., Mench, M., Povilaitis, V., Rineau, F., Rutkowska, B., Schloter, M., Loit, E. (2022). Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach. Science of the Total Environment, 1-12. |
[102] | Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C., Taia A., El-Mageed, A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. 127, 333–347. https://doi.org/10.1016/j.sajb.2019.11.015. |
[103] | Semida, W. M., El-Mageed, T.A., Howladar, S.M., & Rady, M. M. (2015, April 13). Response of Solanum melongena L. Seedlings grown under saline calcareous soil conditions to a new organo-mineral fertilizer. Journal of Animal and Plant Sciences. 25. 485-493. |
[104] | Sher, A., & Mishra, S. (2023). Effect of FYM, biochar and biofertilizers on head quality and physico-chemical attributes of soil of kharif cabbage (Brassica oleracea L. var. capitata) cv. pride of India. The Pharma Innovation Journal 2023; 12(4): 651-658. |
[105] | Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1), Article 12249. https://doi.org/10.1038/s41598-020-69262-x. |
[106] | Singh, B. (2018). Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy, 8(4), 48–48. https://doi.org/10.3390/agronomy8040048. |
[107] | Srivastava. A.K. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119:156-170. DOI:10.1016/j.apsoil.2017.06.00. |
[108] | Stavi, I and Rattan Lal. Agroforestry and Biochar to Offset Climate Change: A Review. (2013). Vol. 33, no. 1, pp. 81–96. https://doi.org/10.1007/s13593-012-0081-1. |
[109] | Stewart, A., Cromey, M. (2011). Identifying Disease Threats and Management Practices for Bio-Energy Crops. Current Opinion in Environmental Sustainability, Volume 3, Issue 1, p. 75-80. https://doi.org/10.1016/j.cosust.2010.10.008. |
[110] | Svenningsen, N.B., Watts-Williams, S. J., Joner, E. J., Battini, F., Efthymiou, A., Cruz-Paredes, C., Nybroe, O. & Jakobsen, I. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. The ISME Journal, 12(5), 1296–1307. https://doi.org/10.1038/s41396-018-0059-3. |
[111] | TAMS Agricultural Development Group. (1976). The Intermediate Savannahs Report. Aubre Barker Associates. |
[112] | Tan, S., Narayanan, M., Thu, T., Ito, N., Yuwalee, U., Arivalagan P., Nguyen T. L, & Liu, J. (2022). A perspective on the interaction between biochar and soil microbes: A way to regain soil eminence. Environmental Research, 214. DOI:hhttps://doi.org/10.1016/j.envres.2022.113832. |
[113] | Tan, X., Liu, S., Liu, Y., Gu, Y., Zeng, G., Hu, X., Wang, X., Liu, S., & Jiang, L. (2017). Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bio-resource Technology. Volume 227, 359-372. https://doi.org/10.1016/j.biortech.2016.12.083. |
[114] | Tan, Z., Yuan, S., Hong, M., Zhang, L., & Huang, Q. (2020). Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. Journal of Hazardous Materials, 384, 121370–121370. https://doi.org/10.1016/j.jhazmat.2019.121370. |
[115] | Taylor, P. (2010). The Biochar Revolution: Transforming Agriculture & Environment. Global Publishing Group Mt Evelyn, Victoria. |
[116] | Terres, J. M., Hagyo, A., & Wania, A. (2014). Scientific Contribution on Combining Bio-physical Criteria Underpinning the Delineation of Agricultural Areas Affected by Specific Constraints. Luxembourg: JRC Science and Policy Reports, EUR 26940 EN, Publications Office of the European Union. |
[117] | Tomczyk, A., Sokołowska, Z., & Patrycja Boguta. (2020). Biomass type effect on biochar surface characteristic and adsorption capacity relative to silver and copper. 278, 118168–118168. https://doi.org/10.1016/j.fuel.2020.118168. |
[118] | United States Department of Agriculture Natural Resources Conservation Service (NRCS) Soil Carbon Amendment 808-CPS-1 (2020). |
[119] | Vijay, V., Shreedhar, S., Adlak, K., Payyanad, S., Sreedharan, V., Gopi, G., Van der Voort, S., Malarvizhi, P., Yi, S., Gebert, J., & Aravind, PV. (2021). Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.710766. |
[120] | Vishwakarma, K., Shukla, A., Shandilya, C., Mohapatra, S., Bhayana, S. & Varma, A. (2020). Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. 11. https://doi.org/10.3389/fmicb.2020.560406. |
[121] | Vochozka M, Maroušková A, Váchal J, Straková J. (2016). Biochar pricing hampers biochar farming. Clean Technologies and Environmental Policy 18:1225-1231. https://doi.org/10.1007/s10098-019-01728-7. |
[122] | Volpiano C.G; Lisboa B.B; Granada C.E; São José G.F.B; de Oliveira A.M.R; Beneduzi A; Perevalova Y; Passaglia L.M.P; Vargas L.K. (2019). Rhizobia for Biological Control of Plant Diseases. In Microbiome in Plant Health and Disease. In (Eds) Kumar V; Prasad R; Kumar M, Choudhary D.K. Microbiome in Plant Health and Disease. Chapter 14 Pp315-336. DOI:10.1007/978-981-13-8495-0_14. |
[123] | Wang, L., Kim, K. H., Alessi, D. S., Rinklebe, J., vWang, H., Xu, G., Hou, R., O’Connor, D. H., & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. 36(3), 358–386. https://doi.org/10.1111/sum.12592. |
[124] | Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil – concepts and mechanisms. 300(1-2), 9–20. https://doi.org/10.1007/s11104-007-9391-5. |
[125] | Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and soil, 300, 9-20. https://doi.org/10.1007/s11104-007-9391-5. |
[126] | Wells, G. J., Stuart, N., Furley, P. A., & Ryan, C. M. (2018). Ecosystem service analysis in marginal agricultural lands: A case study in. Elsevier Ecosystem Services, 32 (70-77) https://doi.org/10.1016/j.ecoser.2018.06.002. |
[127] | Yadav, R., Ror, P., Rathore, P., & Ramakrishna, W. (2020). Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiology and Biochemistry, 150, 222–233. https://doi.org/10.1016/j.plaphy.2020.02.039. |
[128] | Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B. & Sabir, M. (2020). Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use and Management, 36, 2–18. https://doi.org/10.1111/ sum.12546. |
[129] | Yeoh, Y.K., Dennis, P. G., Paungfoo-Lonhienne, C., Weber, L., Brackin, R., Ragan, M. A., Schmidt, S., & Hugenholtz, P. (2017). Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00262-8. |
[130] | Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117. |
[131] | Yu, O.Y., Raichle, B. W., & Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. Int J Energy Environ Eng 4, 44, 4(1), 44–44. https://doi.org/10.1186/2251-6832-4-44. |
[132] | Zhang, C., Liu, L., Zhao, M., Rong, H., & Xu, Y. (2018). The environmental characteristics and applications of biochar. 25(22), 21525–21534. https://doi.org/10.1007/s11356-018-2521-. |
[133] | Zhang, L., Jing, Y., Xiang, Y., Zhang, R., & Lu, H. (2018). Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. Science of the Total Environment, 643, 926–935. https://doi.org/10.1016/j.scitotenv.2018.06.231. |
[134] | Zifcakova, L. (2020). Factors Affecting Soil Microbial Processes. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_13. |
[135] | Zong, Y., Wang, Y., Sheng, Y., Wu, C.F., & Lu, S. (2018). Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar. 25(26), 25726–25733. https://doi.org/10.1007/s11356-017-9509-0. |
[136] | Zwieten, L.V., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2009). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2), 235–246. https://doi.org/10.1007/s11104-009-0050-x. |