[1] | C. Brown, ‘Water Use in the Professional Car Wash Industry’, Sep. 2002. |
[2] | S.-K. Hsu, C.-H. Chen, and W.-K. Chang, ‘Reclamation of car washing wastewater by a hybrid system combining bio-carriers and non-woven membranes filtration’, Desalination Water Treat., vol. 34, no. 1–3, pp. 349–353, Oct. 2011, doi: 10.5004/dwt.2011.2046. |
[3] | H. Murari, ‘Recycling and Reuse of Car Wash Water’, May 2014. |
[4] | N. H. Hashim and N. Zayadi, ‘Pollutants Characterisation of Car Wash Wastewater’, MATEC Web Conf., vol. 47, p. 05008, 2016, doi: 10.1051/matecconf/20164705008. |
[5] | H. N. Ndi, ‘Estimating wasteful water use from car washing points on the water supply system of Yaounde, Cameroon’, GeoJournal, vol. 83, no. 1, pp. 1–12, Feb. 2018, doi: 10.1007/s10708-016-9753-8. |
[6] | J. H. Quayson and E. Awere, ‘Water-Use and Conservation in the Commercial Vehicle Washing Industry in Urban Ghana: The Case of Cape Coast Metropolis’, IRA-Int. J. Technol. Eng. ISSN 2455-4480, vol. 9, no. 3, pp. 27–36, Jan. 2018, doi: 10.21013/jte.v9.n3.p2. |
[7] | I. Monney, E. A. Donkor, and R. Buamah, ‘Clean vehicles, polluted waters: empirical estimates of water consumption and pollution loads of the carwash industry’, Heliyon, vol. 6, no. 5, p. e03952, May 2020, doi: 10.1016/j.heliyon.2020.e03952. |
[8] | S. O. Ganiyu, E. Vieira dos Santos, E. C. Tossi de Araújo Costa, and C. A. Martínez-Huitle, ‘Electrochemical advanced oxidation processes (EAOPs) as alternative treatment techniques for carwash wastewater reclamation’, Chemosphere, vol. 211, pp. 998–1006, Nov. 2018, doi: 10.1016/j.chemosphere.2018.08.044. |
[9] | T. Yılmaz Nayır and S. Kara, ‘Container washing wastewater treatment by combined electro-coagulation–electro-oxidation’, Sep. Sci. Technol., vol. 53, no. 10, pp. 1592–1603, Jul. 2018, doi: 10.1080/01496395.2017.1411365. |
[10] | G. Veréb et al., ‘Purification of real car wash wastewater with complex coagulation/flocculation methods using polyaluminum chloride, polyelectrolyte, clay mineral and cationic surfactant’, Water Sci. Technol., vol. 80, no. 10, pp. 1902–1909, Nov. 2019, doi: 10.2166/wst.2020.008. |
[11] | S. Moazzem, H. Ravishankar, L. Fan, F. Roddick, and V. Jegatheesan, ‘Application of enhanced membrane bioreactor (eMBR) for the reuse of carwash wastewater’, J. Environ. Manage., vol. 254, p. 109780, Jan. 2020, doi: 10.1016/j.jenvman.2019.109780. |
[12] | M. Sarmadi et al., ‘Efficient technologies for carwash wastewater treatment: a systematic review’, Environ. Sci. Pollut. Res., vol. 27, no. 28, pp. 34823–34839, 2020, doi: 10.1007/s11356-020-09741-w. |
[13] | J. Torkashvand, H. Pasalari, M. Gholami, S. Younesi, V. Oskoei, and M. Farzadkia, ‘On-site carwash wastewater treatment and reuse: a systematic review’, Int. J. Environ. Anal. Chem., vol. 00, no. 00, pp. 1–15, 2020, doi: 10.1080/03067319.2020.1772773. |
[14] | Z. A. Bhatti, Q. Mahmood, I. A. Raja, A. H. Malik, M. S. Khan, and D. Wu, ‘Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution’, Phys. Chem. Earth Parts ABC, vol. 36, no. 9–11, pp. 465–469, Jan. 2011, doi: 10.1016/j.pce.2010.03.022. |
[15] | M. Radin, S. Radin Maya, A. I. Kutti, M. Nadira, M. Kassim, and A. Hashim, ‘Efficiency of using commercial and natural coagulants in treating car wash wastewater treatment’, Aust. J. Basic Appl. Sci. J. Basic Appl. Sci., vol. 8, no. 16, pp. 227–234, Dec. 2014. |
[16] | J. Tamiazzo, S. Breschigliaro, M. Salvato, and M. Borin, ‘Performance of a wall cascade constructed wetland treating surfactant-polluted water’, Environ. Sci. Pollut. Res., vol. 22, no. 17, pp. 12816–12828, Sep. 2015, doi: 10.1007/s11356-014-4063-5. |
[17] | M. A. Tony and Z. Bedri, ‘Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis’, Adv. Environ. Chem., vol. 2014, pp. 1–8, 2014, doi: 10.1155/2014/958134. |
[18] | S. Moazzem, J. Wills, L. Fan, F. Roddick, and V. Jegatheesan, ‘Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse’, Environ. Sci. Pollut. Res., vol. 25, no. 9, pp. 8654–8668, Mar. 2018, doi: 10.1007/s11356-017-1121-9. |
[19] | A. C. S. Pinto et al., ‘Carwash wastewater treatment by micro and ultrafiltration membranes: Effects of geometry, pore size, pressure difference and feed flow rate in transport properties’, J. Water Process Eng., vol. 17, pp. 143–148, Jun. 2017, doi: 10.1016/j.jwpe.2017.03.012. |
[20] | W. Abdelmoez, N. A. M. Barakat, and A. Moaz, ‘Treatment of wastewater contaminated with detergents and mineral oils using effective and scalable technology’, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., vol. 68, no. 5, pp. 974–981, 2013, doi: 10.2166/wst.2013.275. |
[21] | E.-S. Z. El-Ashtoukhy, N. K. Amin, and Y. O. Fouad, ‘Treatment of real wastewater produced from Mobil car wash station using electro-coagulation technique’, Environ. Monit. Assess., vol. 187, no. 10, p. 628, Oct. 2015, doi: 10.1007/s10661-015-4836-4. |
[22] | I. Monney, R. Buamah, E. A. Donkor, R. Etuaful, H. K. Nota, and H. Ijzer, ‘Treating waste with waste: the potential of synthesised alum from bauxite waste for treating car wash wastewater for reuse’, Environ. Sci. Pollut. Res., vol. 26, no. 13, pp. 12755–12764, May 2019, doi: 10.1007/s11356-019-04730-0. |
[23] | M. T. Veit, Í. G. V. Novais, P. T. Juchen, S. M. Palácio, G. da Cunha Gonçalves, and J. C. Zanette, ‘Automotive Wash Effluent Treatment Using Combined Process of Coagulation/Flocculation/Sedimentation–Adsorption’, Water. Air. Soil Pollut., vol. 231, no. 10, p. 494, Oct. 2020, doi: 10.1007/s11270-020-04862-x. |
[24] | Z. B. Gönder, G. Balcıoğlu, I. Vergili, and Y. Kaya, ‘An integrated electrocoagulation-nanofiltration process for carwash wastewater reuse’, Chemosphere, vol. 253, p. 126713, Aug. 2020, doi: 10.1016/j.chemosphere.2020.126713. |
[25] | M. J. Mohammadi et al., ‘Removal of turbidity and organic matter from car wash wastewater by electro-coagulation process’, Desalination Water Treat., vol. 68, pp. 122–128, 2017, doi: 10.5004/dwt.2017.20319. |
[26] | H. Rubí-Juárez, C. Barrera-Díaz, I. Linares-Hernández, C. Fall, and B. Bilyeu, ‘A Combined Electrocoagulation-Electrooxidation Process for Carwash Wastewater Reclamation’, Int J Electrochem Sci, vol. 10, p. 14, 2015. |
[27] | E. Bazrafshan, F. K. Mostafapoor, M. M. Soori, and A. H. Mahvi, ‘application of combined chemical coagulation and electro-coagulation process for carwash wastewater treatment’, Fresenius Environ. Bull., vol. 21, no. 9, p. 8, 2012. |
[28] | V. Nagamani, R. Shyam Sunder, and V. lakshman, ‘A Cost Effective Membrane Integrated Process for the Treatment of Vehicle Wash Wastewater’, Int. J. Eng. Res., vol. V8, no. 12, p. IJERTV8IS120399, Jan. 2020, doi: 10.17577/IJERTV8IS120399. |
[29] | J. Torkashvand, H. Pasalari, M. Gholami, S. Younesi, V. Oskoei, and M. Farzadkia, ‘On-site carwash wastewater treatment and reuse: a systematic review’, Int. J. Environ. Anal. Chem., pp. 1–15, Jun. 2020, doi: 10.1080/03067319.2020.1772773. |
[30] | W. J. Lau, A. F. Ismail, and S. Firdaus, ‘Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes’, Sep. Purif. Technol., vol. 104, pp. 26–31, Feb. 2013, doi: 10.1016/j.seppur.2012.11.012. |
[31] | D. Uçar, ‘Membrane processes for the reuse of car washing wastewater’, J. Water Reuse Desalination, vol. 8, no. 2, pp. 169–175, Jun. 2018, doi: 10.2166/wrd.2017.036. |
[32] | S. A. Kiran, G. Arthanareeswaran, Y. L. Thuyavan, and A. F. Ismail, ‘Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem’, Ecotoxicol. Environ. Saf., vol. 121, pp. 186–192, Nov. 2015, doi: 10.1016/j.ecoenv.2015.04.001. |
[33] | M. B. S. Shete and D. N. P. Shinkar, ‘Use of membrane to treat car wash wastewater’, Adv. Technol., vol. 1, no. 3, p. 7, 2014. |
[34] | I. A. Rodriguez Boluarte et al., ‘Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes’, Int. Biodeterior. Biodegrad., vol. 113, pp. 44–48, Sep. 2016, doi: 10.1016/j.ibiod.2016.01.017. |
[35] | M. Sarmadi et al., ‘Efficient technologies for carwash wastewater treatment: a systematic review’, Environ. Sci. Pollut. Res., vol. 27, no. 28, pp. 34823–34839, Oct. 2020, doi: 10.1007/s11356-020-09741-w. |
[36] | J. Ahmad, M. Umar, F. Shah, and A. Hussain, ‘Design of a car wash waste water treatment process for local car wash stations’, p. 13, 2018. |
[37] | S. Naveed ul Hasan, A. Jamil, N. Ahmeed Khan, N. Khan, and M. Abid Shafiq, ‘A Low-Cost Wastewater Treatment Unit for Reducing the Usage of Fresh Water at Car Wash Stations in Pakistan’, Pak. J. Sci. Ind. Res., vol. 62A, pp. 57–66, 2019. |
[38] | E. L. Subtil, R. Rodrigues, I. Hespanhol, and J. C. Mierzwa, ‘Water reuse potential at heavy-duty vehicles washing facilities – The mass balance approach for conservative contaminants’, J. Clean. Prod., vol. 166, pp. 1226–1234, Nov. 2017, doi: 10.1016/j.jclepro.2017.08.162. |
[39] | R. Etchepare, R. Zaneti, A. Azevedo, and J. Rubio, ‘Application of flocculation–flotation followed by ozonation in vehicle wash wastewater treatment/disinfection and water reclamation’, Desalination Water Treat., vol. 56, no. 7, pp. 1728–1736, Nov. 2015, doi: 10.1080/19443994.2014.951971. |
[40] | R. Zaneti, R. Etchepare, and J. Rubio, ‘More environmentally friendly vehicle washes: water reclamation’, J. Clean. Prod., vol. 37, pp. 115–124, Dec. 2012, doi: 10.1016/j.jclepro.2012.06.017. |
[41] | T. Ahmad, K. Ahmad, and M. Alam, ‘Sludge quantification at water treatment plant and its management scenario’, Environ. Monit. Assess., vol. 189, no. 9, p. 453, Aug. 2017, doi: 10.1007/s10661-017-6166-1. |
[42] | R. N. Zaneti, R. Etchepare, and J. Rubio, ‘Car wash wastewater treatment and water reuse - a case study’, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., vol. 67, no. 1, pp. 82–88, 2013, doi: 10.2166/wst.2012.492. |
[43] | R. Zaneti, R. Etchepare, and J. Rubio, ‘Car wash wastewater reclamation. Full-scale application and upcoming features’, Resour. Conserv. Recycl., vol. 55, no. 11, pp. 953–959, Sep. 2011, doi: 10.1016/j.resconrec.2011.05.002. |
[44] | Y. Deng and R. Zhao, ‘Advanced Oxidation Processes (AOPs) in Wastewater Treatment’, Curr. Pollut. Rep., vol. 1, no. 3, pp. 167–176, Sep. 2015, doi: 10.1007/s40726-015-0015-z. |
[45] | R. Ameta, A. K. Chohadia, A. Jain, and P. B. Punjabi, ‘Chapter 3 - Fenton and Photo-Fenton Processes’, in Advanced Oxidation Processes for Waste Water Treatment, S. C. Ameta and R. Ameta, Eds. Academic Press, 2018, pp. 49–87. doi: 10.1016/B978-0-12-810499-6.00003-6. |
[46] | J. K. Edzwald, Water quality & treatment: a handbook on drinking water. American Water Works Association, New York: McGraw-Hill, 2012. Accessed: May 22, 2020. [Online]. Available: http://www.books24x7.com/marc.asp?bookid=35947. |
[47] | J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe, and G. Tchobanoglous, MWH’s Water Treatment: Principles and Design. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. doi: 10.1002/9781118131473. |
[48] | Z. B. Gönder, G. Balcıoğlu, I. Vergili, and Y. Kaya, ‘Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterisation’, J. Environ. Manage., vol. 200, pp. 380–390, Sep. 2017, doi: 10.1016/j.jenvman.2017.06.005. |
[49] | FDEP, ‘Guide to Best Management Practices For 100% Closed Loop Recycling Systems at Vehicle and other Equipment Wash Facilities’, Florida Department of Environmental Protection, Oct. 2005. [Online]. Available: https://www.broward.org/Environment/Resources/Documents/BMPVehicleWash.pdf. |