[1] | Abidi, B., Jilbab, A., and Haziti, M.E.L. (2016). Wireless Sensor Networks in biomedical: wireless body area networks. In: Procedings of the Europe, Middle East and North Africa Conference on Technology and Security to support Learning. EMENA-TSSL, SaidaOujda, Morocco, 3–5. |
[2] | ADA (American Diabetes Association). (2018). Economic costs of diabetes in the U.S. in 2017. Diabetes Care, 41 (5), 917-928. DOI: 10.2337/dci18-0007. |
[3] | ADA (American Diabetes Association). (2003). Physical Activity/Exercise and Diabetes Mellitus. Diabetes Care, suppl 1: s73-s77. url: https://doi.org/10.2337/diacare.26.2007.S73. |
[4] | Agarwal, N. and Hussain, S.Z. (2018). A Closer Look at Intrusion Detection System for Web Applications. Security and Communication Networks, 1–28. DOI: https://doi.org/10.1155/2018/96013. |
[5] | Azizi, F., Hatami, H. and Janghorbani, M. (2007). Epidemiology and Control of Common Disease in Iran. Tehran: Eshtiagh Press, 1–5. |
[6] | Babamiri, B., Bahari, D., Salimi, A. (2019). Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions. Biosensors and Bioelectronics, 111530. DOI: https://doi.org/10.1016/j.bios.2019.111530. |
[7] | Bal, A. (2000). Diabetes: ethical, social and economic aspects. The Indian Journal of Medical Ethics, 8:3. |
[8] | Bilal, M and Kang, S.G. (2017). An Authentication Protocol for Future Sensor Networks. Sensors, 17(5): 979. DOI:10.3390/s170509.79. |
[9] | Boutry, C. M., Beker, L., Kaizawa, Y., Vassos, C., Tran, H., Hinckley, A. C., Pfattner, R., Niu, S. M., Li, J. H., Claverie, J., Wang, Z., Chang, J., Fox, P. M., and Bao, Z. N. (2019). Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nature Biomedical Engineering, 3(1): 47–57. DOI: 10.1038/s41551-018-0336-5. |
[10] | Burge, M.R., Mitchell, S., Sawyer, A., Schade, D.S. (2008). Continuous glucose monitoring: the future of diabetes management. Diabetes Spectr., 21: 112–119. |
[11] | Butun I., Morgera S., Sankar R. (2014). A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor, 16:266–282. DOI: 10.1109/SURV.2013.050113.00191. |
[12] | Butun I., Ra I.H., Sankar R. (2015). PCAC: Power-and Connectivity-Aware Clustering for Wireless Sensor Networks. EURASIP J. Wirel. Commun. Netw., 1:1–15. DOI: 10.1186/s13638-015-0321-6. |
[13] | Chaudhary, D. and Waghmare, L.M. (2014). Design Challenges of Wireless Sensor Networks and Impact on Healthcare Applications. International Journal of Latest Research in Science and Technology, 3(2):110–114. |
[14] | Control, C. f. D. Prevention, C. f. D. Control, and Prevention. (2011). National diabetes fact sheet: national estimates and general information on diabetes and pre-diabetes in the United States, Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 201. |
[15] | Dazzi, D., Taddei, F., Gavarini, E A., Negro, U.R. and Pezzarossa, A. (2001). The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. Journal of Diabetes and its Complications, 15: 80–87. |
[16] | Deedwania, P. C. and Fonseca, V. A. (2005). Diabetes, prediabetes, and cardiovascular risk: shifting the paradigm. The American journal of medicine, 118: 939–947. |
[17] | Delamater, A. M., Jacobson, A. M., Anderson, B., Cox, D., Fisher, L., Lustman, P., Rubin, R.and Wysocki, T. (2001). Psychosocial Therapies in Diabetes: Report of the Psychosocial Therapies Working Group. Diabetes Care, 24(7): 1286-1292. DOI: https://doi.org/10.2337/diacare.24.7.1286. |
[18] | Ding, S. and Schumacher, M. (2016). Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review. Sensors, 16, 589: 1–13. doi: 10.3390/s16040589. |
[19] | Forouhi, N.G., Misra, A., Mohan, V., Taylor, R. and Yancy., W. (2018). Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ, 361: k2234, 1–9. DOI: 10.1136/bmj.k2234. |
[20] | Forouzanfar M.H., Alexander, L., Anderson, H.R., Bachman, V.F., Biryukov, S., Brauer, M., Burnett, R., Casey, D., Coates, M.M., Cohen, A., Delwiche, K., Estep, K., Frostad, J.J., Astha, K.C., Kyu, H.H., Moradi-Lakeh, M., Ng, M…. et al., (2015). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 386(10010): 2287-323. DOI: 10.1016/S0140-6736(15)00128-2. |
[21] | Frier, B.M. (2014). Hypoglycaemia in diabetes mellitus: Epidemiology and clinical implications. Nat. Rev. Endocrinol., 10: 711–722. |
[22] | Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587): 509–514. DOI: 10.1038/nature16521. |
[23] | Glasgow, R.E. (1995). A Practical Model of Diabetes Management and Education. Diabetes Care, 18(1): 117–126. |
[24] | Goharimanesh, M., Lashkaripour, A. and Akbari, A. (2015). A Comparison of Fuzzy Types 1 and 2 in Diabetics Control, Based on Augmented Minimal Model. Journal of World’s Electrical Engineering and Technology, 4(2): 70–75. |
[25] | Grant, P. (2007). A new approach to diabetic control: fuzzy logic and insulin pump technology, Medical engineering & physics, 29: 824–827. |
[26] | Gupta, V.K., Gupta, M., and Arora.S. (2017). Diabetes: Ethical Issues. Chapter 159, Medicine Update, India. pp742-745. url: http://www.apiindia.org/pdf/medicine_update_2017/mu_159.pdf. |
[27] | IDF (International Diabetes Federation). (2020). IDF Diabetes Atlas 2019 (9th edition), 1–176. url: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html (Access to July 14, 2020 at 10:00 am national time of Bangladesh). |
[28] | IDF (2019). What is Diabetes? About Diabetes. International Diabetes Federation, Brussels, Belgium. url:https://www.idf.org/aboutdiabetes/what-is-diabetes.html?gcid=EAIaIQobChMInML08.001.8b00497. |
[29] | IDF (International Diabetes Federation). (2017). Diabetes atlas. 8th ed. IDF, 2017. url: ww.diabetesatlas.org, Google Scholar. |
[30] | Islam, D., Huque, A., Sheuly, Mohanta, L.C., Das, S.K., Sultana, A. (2018). Hypoglycemic and hypolipidemic effects of Nelumbonucifera flower in Long-Evans rats. Journal of Herbmed Pharmacology, 7: 148–54. DOI: 10.15171/jhp.2018.25. |
[31] | Johnson, J. (2019). A review of therapies and lifestyle changes for diabetes. Medical News Today, 1-2. url: https://www.medicalnewstoday.com/articles/317074.php. |
[32] | Johnston, B.C., Kanters, S., and Bandayrel, K.,… et al. (2014). Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA, 312 (9):923-33. DOI: 10.1001/jama.2014.10397. |
[33] | Kays, R., Tilak, S., Crofoot, M., Fountain, T., Obando, D., Ortega, A., Kuemmeth, F., Mandel, J., Swenson, G., Lambert, T., Hirsch, B. & Wikelski, M. (2011). Tracking Animal Location and Activity with an Automated Radio Telemetry System in a Tropical Rainforest. Published by Oxford University Press on behalf of the British Computer Society. The Computer Journal, 1(1): 1–18, doi: 10.1093/comjnl/bxr072. |
[34] | Khan Y, Han D, Pierre A, Ting J, Wang X C, Lochner C M, Bovo G, Yaacobi-Gross N, Newsome C, Wilson R, Arias A C. (2018). A flexible organic reflectance oximeter array. Proceedings of the National Academy of Sciences, 115(47): E11015–E11024. DOI: 10.1073/pnas.1813053115. |
[35] | Khan Y, OstfeldA E, Lochner C M, Pierre A, A C. (2016). Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 28(22): 4373–4395. DOI: 10.1002/adma.201504366. |
[36] | Khan, R.I. and Pathan, A.S. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14(4):1–16. DOI: 10.1177/1550147718768994. |
[37] | Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A. (2011). Epidermal electronics. Science, 333(6044): 838–843. DOI: 10.1126/science.1206157. |
[38] | Li T, Li Y, Zhang T. (2019). Materials, structures, and functions for flexible and stretchable biomimetic sensors. Accounts of Chemical Research, 52(2): 288–296. DOI: 10.1021/acs.accounts. |
[39] | Li, Y., Zheng, L. and Wang, X. (2019). Flexible and wearable healthcare sensors for visual reality healthmonitoring. Virtual Reality & Intelligent Hardware, 1(4): 411—427. DOI: 10.1016/j.vrih.2019. |
[40] | Li, R., Bilik, D., Brown, M.B., Zhang, P., Ettner, S.L., Ackermann, R.T., Crosson, J.C. and Herman, W.H. (2013). Medical costs associated with type 2 diabetes complications and comorbidities. American Journal of Managed Care, 19(5), 421-430. DOI: 10.1111/j.1742-1241.2007.01343.x. |
[41] | Lou Z, Wang L L, Shen G Z. (2018). Recent advances in smart wearable sensing systems. Advanced Materials Technologies, 3(12): 1800444. DOI: 10.1002/admt.201800444. |
[42] | Maideen, N.M.P. and Balasubramaniam, R. (2018). Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with commonherbs. Journal of Herbmed Pharmacology.7:200–10. DOI: 10.15171/jhp.2018.32. |
[43] | Mazid, M.A. (2019, Nov14.). Global Economic Impact of Diabetes. The Daily Asian Age, Dhaka, Bangladesh. url: https://dailyasianage.com/news/204986/global-economic-impact-of-diabetes. |
[44] | Moradi, B., Abbaszadeh, S., Shahsavari, S., Alizadeh,M. and Beyranvand, F. (2018). The most useful medicinal herbs to treat diabetes. Biomedical Research and Therapy, 5(8): 2538–2551. |
[45] | Murray, C.J.L. and Lopez, A.D. (eds.). (1996). The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in I990 and Projected to 2020. The Harvard School of Public Health on behalf of the World Health Organization and World Bank and distributed by Harvard University Press. 1–43. |
[46] | Nall, R. (2018). An overview of diabetes types and treatments. Newsletter on Health. Medical News Today, 1(1): 1–5. |
[47] | O'Donovan, T., O'Donoghue, J., Sreenan, C., Sammon, D., O'Reilly, P., O'Connor, K.A. (2009). A Context Aware Wireless Body Area Network. Pervasive Computing Technologies for Healthcare. 1–2, DOI: 10.4108/ICST.PERVASIVEHEALTH2009.5987. |
[48] | Osler, W. and McCrae, T. (1921). The principles and practice of medicine. D. Appleton and Company, 1921. |
[49] | Ozdemir, F. and Kargi, A. (2011). Electromagnetic waves and Human Health. IntechOpen Limited, UK. DOI: 10.5772/16343. |
[50] | Peiris, V. (2013). Highly integrated wireless sensing for body area network applications. The International Society for Optics and Photonics. SPIENewsroom. doi: 10.1117/2.1201312.005120. |
[51] | Peters, M.L., Huisman, E.L., Schoonen, M., Wolffenbuttel, B.H.R. (2017). The current total economic burden of diabetes mellitus in the Netherlands. Netherlands Journal of Medicine, 75 (7), 281-297. |
[52] | Priya, S.P., Chowdary, V.A. and Dinesh, V.S. (2013). Wireless sensor networks to monitor Glucose level in blood. International Journal of Advancements in Research & Technology, 2(4): 322–326. |
[53] | Rahimi-Madiseh, M., Karimian, P., Kafeshani, M., Rafieian-Kopaei, M. (2017). The effects of ethanol extract of Berberis vulgaris fruit on histopathological changes andbiochemical markers of the liver damage in diabetic rats. Iranian Journal of Basic Medical Sciences, 20: 552–556. |
[54] | Schiel, R., Bambauer, R. and Steveling, A. (2018). Technology in Diabetes Treatment: Update and Future. Artificial Organs, 42 (11), 1017–1027. url: https://doi.org/10.1111/aor.13296. |
[55] | Sha, H., Zeng, H., Zhao, J., & Jin, H. (2019). Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. European Journal of Pharmacology, 859: 172522. DOI: 10.1016/j.ejphar.2019.172522. |
[56] | Sheridan C. (2014). Apple moves on health, drug developers shift into smart gear. Nature Biotechnology, 32(10): 965–966. DOI: 10.1038/nbt1014-965a. |
[57] | Takei K, Honda W, Harada S, Arie T, Akita S. (2015). Toward flexible and wearable human-interactive health-monitoring devices. Advanced Healthcare Materials, 4(4): 487–500. DOI: 10.1002/adhm.201400546. |
[58] | Vu C. and Kim J. (2018). Human motion recognition by textile sensors based on machine learning algorithms. Sensors, 18(9): 3109. DOI: 10.3390/s18093109. |
[59] | Waltham. (2017). Feline Body Mass Index (FBMI). Waltham FBMI Calculator. 1–2. url: https://jscalc.z6_io/calc/hORP8x2bWjQU7qxq |
[60] | Wang X W, Gu Y, Xiong Z P, Cui Z, Zhang T. (2014). Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Advanced Materials, 26(9): 1309. DOI: 10.1002/adma.201470054. |
[61] | Westman, E.C., Yancy, W.S. Jr., Humphreys, M. (2006). Dietary treatment of diabetes mellitus in the pre-insulin era (1914-1922). PerspectBiol Med, 49: 77-83. DOI: 10.1353/pbm.2006.0017 |
[62] | WHO. (2018). Key Facts. Diabetes.url: https://www.who.int/news-room/fact-sheets/detail/diabetes. |
[63] | Wu, F., Xu, L., and Kumari, S. (2017). An Improved and Anonymous two factor authentication protocol for healthcare applications with wireless medical sensor networks. MultimedSyst, 23 (2), 195–205. |
[64] | Yang, W., Zhao, W., Xiao, J., Li, R., Zhang, P., Kissimova-Skarbek, K., et al. (2012). Medical care and payment for diabetes in China: enormous threat and great opportunity. PLoS ONE, 7(9): e39513. DOI: 10.1371/journal.pone.0039513. |
[65] | Zang Y P, Zhang F J, Di C A and Zhu D B. (2015). Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2(2): 140–156. DOI: 10.1039/c4mh00147h. |
[66] | Zhang T, Bai Y Y, Sun F Q. (2018). Recent advances in flexible self-healing materials and sensors. Scientia Sinica Informationis, 48(6): 650–669. DOI: 10.1360/n112018-00117. |
[67] | Zhao W X, Bhushan A, Santamaria A, Simon M and Davis C. (2008). Machine learning: A crucial tool for sensor design. Algorithms, 1(2): 130–152. DOI: 10.3390/a1020130. |