[1] | IDF: International Diabetes Federation 2011; Diabetes Atlas 5th Edition. |
[2] | Hui-Hui W, Nai-Jia L, Zhen Y, Xiao-Ming T, Yan-Ping D, Xuan-Chun W et al. IGF2BP2 and obesity interaction analysis for type 2 diabetes mellitus in Chinese Han population. European Journal of Medical Research 2014; 19: 40. |
[3] | American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012; 35(Suppl. 1); S62–S69. |
[4] | Ershow AG. Environmental Influences on Development of Type 2 Diabetes and Obesity: Challenges in Personalizing Prevention and Management. Journal of Diabetes Sci Technol 2009; 3(4): 727-734. |
[5] | Dupuis J, Langenberg C, Prokopenko I et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42(2):105–116. |
[6] | Bell JL, Wächter K, Mühleck B, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013; 70(15):2657-75. |
[7] | Dai N, Rapley J, Angel M, et al. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 2011; 25(11):1159-72. |
[8] | Zachariah S, Brackenridge A, Shojaee-Moradie F, Camuncho-Hubner C, Umpleby AM, Russell-Jones D. The mechanism of non-islet cell hypoglycaemia caused by tumour-produced IGF-II. Clin Endocrinol 2007; 67(4):637-8. |
[9] | Gu T, Horová E, Möllsten A, et al. IGF2BP2 and IGF2 genetic effects in diabetes and diabetic nephropathy. J Diabetes Complications. 2012; 26(5):393-8. |
[10] | Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316: 1336-1341. |
[11] | Cauchi S, Proença C, Choquet H, Gaget S, De Graeve F, Marre M, Balkau B, Tichet J, Meyre D, Vaxillaire M, Froguel P. Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J Mol Med (Berl) 2008; 86(3):341-8. |
[12] | Cauchi S, Ezzidi I, El Achhab Y, Mtiraoui N, Chaieb L, Salah D, Nejjari C, Labrune Y, Yengo L, Beury D, Vaxillaire M, Mahjoub T, Chikri M, Froguel P. European genetic variants associated with type 2 diabetes in North African Arabs. Diabetes Metab 2012; 38(4):316-23. |
[13] | Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, Vázquez-Cárdenas P, Ordóñez-Sánchez ML, Rodríguez-Guillén R, Riba L, Rodríguez-Torres M, Guerra-García MT, Guillén-Pineda LE, Choudhry S, Del Bosque-Plata L, Canizales-Quinteros S, Pérez-Ortiz G, Escobedo-Aguirre F, Parra A, Lerman-Garber I, Aguilar-Salinas CA, Tusié-Luna MT. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes 2012; 61(12): 3314-21. |
[14] | Grarup N, Rose CS, Andersson EA, Andersen G, Nielsen AL, Albrechtsen A, et al. Studies of association of variants near the HHEX, CDKN2A/B and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects validation and extension of genome-wide association studies. Diabetes 2007; 56:3105–11. |
[15] | Han X, Luo Y, Ren Q, Zhang X, Wang F, Sun X, Zhou X, Ji L: Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 2010; 11:81. |
[16] | Herder C, Rathmann W, Strassburger K, Finner H, Grallert H, Huth C, Meisinger C, Gieger C, Martin S, Giani G, Scherbaum WA, Wichmann HE, Illig T. Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes confer risk of type 2 diabetesindependently of BMI in the German KORA studies. Horm Metab Res 2008; 40(10):722-6. |
[17] | Hu C, Zhang R, Wang C, Wang J, Ma X, et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 2009; 4 (10): e7643. |
[18] | Rita Nemr a, Akram Echtay b, Eman A. Dashti c, Ahmad W. Almawi c, Asya S. Al-Busaidi c, Sose H. Keleshian d, Noha Irani-Hakime d, Wassim Y. Almawi c. Strong association of common variants in the IGF2BP2 gene with type 2 diabetes in Lebanese Arabs. Diabetes Research and Clinical Practice 2012; 96: 225-229. |
[19] | Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, Miki T, et al. Replication study of candidate genes associated with type 2 diabetes based on genome-wide, screening. Diabetes 2009; 58, 493–498. |
[20] | Wu Y, Li H, Loos RJF, Yu Z, Ye X, et al. (2008) Common Variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE Genes Are Associated With Type 2 Diabetes and Impaired Fasting Glucose in a Chinese Han Population. Diabetes 57: 2834–2842. |
[21] | Duesing K, Fatemifar G, Charpentier G, Marre M, Tichet J, Hercberg S, et al. Evaluation of the association of IGF2BP2 variants with type 2 diabetes in French Caucasians. Diabetes 2008;57(7):1992–6. |
[22] | Uma Jyothi Kommoju, Jayaraj Maruda, Subburaj Kadarkarai, Kumuda Irgam, Jaya Prasad Kotla, Lakshmi Velaga, Battini Mohan Reddy. No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad, India. Meta Gene 2013; 1: 15–23. |
[23] | Hertel JK, Johansson S, Raeder H, Midthjell K, Lyssenko V, Groop L, et al. Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study). Diabetologia 2008; 51(6):971–7. |
[24] | Lee YH, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, et al. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 2008; 53(11–12):991–8. |
[25] | Benrahma H1, Charoute H, Lasram K, Boulouiz R, Atig RK, Fakiri M, Rouba H, Abdelhak S, Barakat A. Association analysis of IGF2BP2, KCNJ11, and CDKAL1 polymorphisms with type 2 diabetes mellitus in a Moroccan population: a case-control study and meta-analysis. Biochem Genet. 2014; 52(9-10):430-42. |
[26] | Lasram K, Ben Halim N, Benrahma H, Mediene-Benchekor S, Arfa I, Hsouna S, Kefi R, Jamoussi H, Ben Ammar S, Bahri S, Abid A, Benhamamouch S, Barakat A, Abdelhak S. Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960 polymorphisms in type 2 diabetes, diabetic complications, obesity risk and hypertension in the Tunisian population. J Diabetes 2014; 7 (1): 102-13. |
[27] | Jia H, Yu L, Jiang Z, Ji Q. Association between IGF2BP2 polymorphism rs4402960 and risk of type 2 diabetes mellitus: a meta-analysis. Arch Med Res 2011; 42(5): 361-7. |
[28] | Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, et al. Confirmation of Multiple Risk Loci and Genetic Impacts by a Genome-Wide Association Study of Type 2 Diabetes in the Japanese Population. Diabetes 2009; 58: 1690-1699. |
[29] | Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881– 885. |
[30] | Wu J, Wu J, Zhou Y, Zou H, Guo S, Liu J, Lu L, Xu H. Quantitative assessment of the variation in IGF2BP2 gene and type 2 diabetes risk. Acta Diabetol 2012; 49 Suppl 1:S87-97. |
[31] | Zhang S, Xiao J, Ren Q, Han X, Tang Y, Yang W et al. Replication of association study between type 2 diabetes mellitus and IGF2BP2 in Han Chinese population. Chinese Medical Journal 2013;126 (21): 4013-18. |
[32] | Cauchi S, Meyre D, Durand E, Proenc¸a C, Marre M, Hadjadj S, et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS ONE 2008; 3(5):e2031. |
[33] | Chidambaram M, Radha V, Mohan V. Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 2010; 59(12):1760-6. |
[34] | Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 2010, 59(8):2068–2074. |
[35] | Salanti G, Southam L, Altshuler D, Ardlie K, Barroso I, Boehnke M, et al. Underlying genetic models of inheritance in established type 2 diabetes associations. Am J Epidemiol 2009;170(5):537–45. |
[36] | Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, Norris JM, Haffner SM, Et al. Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the Insulin Resistance Atherosclerosis Family Study. Diabetes 2008; 57:1093–1100. |
[37] | Staiger H, Machicao F, Stefan N, Tschritter O, Thamer C, Kantartzis K, Et al. Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS ONE 2:e832, 2007. |
[38] | Rong R, Hanson RL, Ortiz D, Wiedrich C, Kobes S, Knowler WC et al. Association analysis of variation in or near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 2008; 58: 478– 488. |
[39] | Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, Maassen JA et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 2008; 51: 1659 – 1663. |
[40] | Stančáková A, Kuulasmaa T, Paananen J, et al. Association of 18 Confirmed Susceptibility Loci for Type 2 Diabetes With Indices of Insulin Release, Proinsulin Conversion, and Insulin Sensitivity in 5,327 Nondiabetic Finnish Men. Diabetes. 2009;58(9):2129-2136. |
[41] | Zhang L, Pei Q, Yang G, Zhao Y, Mu Y, Huang Q, et al. The Effect of IGF2BP2 Gene Polymorphisms on Pioglitazone Response in Chinese Type 2 Diabetes Patients Pharmacology 2014; 94:115–122. |
[42] | Salem SD, Saif-Ali R, Ismail IS, Al-Hamodi Z, Poh R, Muniandy S. IGF2BP2 Alternative Variants Associated with Glutamic Acid Decarboxylase Antibodies Negative Diabetes in Malaysian Subjects. Baradaran HR, ed. PLoS ONE. 2012; 7(9):e45573. |