| [1] | Bonora, E. (2008). Protection of pancreatic beta-cells: is it feasible? Nutr. Metab. Cardiovasc. Dis., 18:74-83. |
| [2] | Monnier, L. and Colette, C. (2006). Contributions of fasting and postprandial glucose to hemoglobin A1c. Endocr. Pract., 12(Suppl 1):42-46. |
| [3] | Jiang, M.H.; Fei, J.; Lan, M.S.; et al. (2008). Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia, 51:1525-1533. |
| [4] | Delbosc, S.; Paizanis, E.; Magous, R.; et al. (2005). Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis, 179:43-49. |
| [5] | Wei, Y.; Whaley-Connell, A.T.; Chen, K.; et al. (2007). NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension, 50:384-391. |
| [6] | Evans, J.L.; Maddux, B.A. and Goldfine, I.D. (2005). The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox. Signal., 7:1040-1052. |
| [7] | Hakkinen, S.H.; Karenlampi, S.O.; Heinonen, I.M.; et al. (1999). Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem., 47:2274-2279. |
| [8] | Larocca, L.M.; Teofili, L.; Sica, S.; et al. (1995). Quercetin inhibits the growth of leukemic progenitors and induces the expression of transforming growth factor-B1 in these cells. Blood, 85:3654-3661. |
| [9] | Cox, D.; Whichelow, M.J. and Prevost, T.A. (2000). Antioxidant effects of flavonoids. Public Health Nutr., 3:19-29. |
| [10] | Chang, W.S.; Lee, Y.J.; Lu, F.J. and Chiang, H.C. Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res., 13:2165-2170. |
| [11] | Chen, Y.T.; Zheng, R.L.; Jia, Z.J. and Ju, Y. (1990). Flavonoids as superoxide scavengers and antioxidants. Free Radic. Biol. Med., 9:19-20. |
| [12] | Fiorani, M.; Guidarelli, A.; Blasa, M.; et al. (2010). Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extra-mitochondrial fraction of the flavonoid. J. Nutr. Biochem. 21:397-404. |
| [13] | Meyers, K.J.; Rudolf, J.L. and Mitchell, A.E. (2008). Influence of dietary quercetin on glutathione redox status in mice. J. Agric. Food Chem., 56:830-836. |
| [14] | Kobori, M.; Masumoto, S.; Akimoto, Y. and Takahashi, Y. (2009). Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol. Nutr. Food Res., 53:859-868. |
| [15] | Youl, E.; Bardy, G.; Magous, R.; et al. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol., 161:799-814. |
| [16] | Barham, D. and Trinder, P. (1972). An improved color reagent from the determination of blood glucose by the oxidative system. Analyst, 97:142-145. |
| [17] | Abrahamson, M.J. (2004). Optimal glycemic control in type 2 diabetes mellitus: fasting and postprandial glucose in context. Arch. Intern. Med., 164:486-491. |
| [18] | Haller, H. (1998). The clinical importance of postprandial glucose. Diabetes Res. Clin. Pract., 40:S43-S49. |
| [19] | Ceriello, A.; Davidson, J.; Hanefeld, M.; et al. (2006). Postprandial hyperglycemia and cardiovascular complications of diabetes: an update. Nutr. Metab. Cardiovasc. Dis., 16:453-456. |
| [20] | Hanefeld, M. (1998). The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diab. Complications, 12:228-237. |
| [21] | Gholamhoseinian, A.; Fallah, H. and Sharififar, F. (2009). Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on alpha-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine, 16:935-41. |
| [22] | Wang, H.; Du, Y.J. and Song, H.C. (2010). α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem., 123:6-13. |
| [23] | Saito, M. (2007). Role of FOSHU (food for specified health uses) for healthier life. Yakugaku Zasshi, 127:407-416. |
| [24] | Erlund, I.; Freese, R.; Marniemi, J.; et al. (2006). Bioavailability of quercetin from berries and the diet. Nutr. Cancer, 54:13-17. |
| [25] | Matsuda, H.; Morikawa, T. and Yoshikawa, M. (2002). Antidiabetogenic constituents from several natural medicines. Pure Appl. Chem., 74(7):1301-1308. |
| [26] | Pereira, D.F.; Cazarolli, L.H.; Lavado, C.; et al. (2011). Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition, 27(11-12):1161-1167. |
| [27] | Jo, S.H.; Ka, E.H.; Lee, H.S.; et al. (2009). Comparison of antioxidant potential and rat intestinal α-glucosidases inihibitory activities of quercetin, rutin, and isoquercetin. Int. J. Appl. Res. Nat. Prod., 2:52-60. |
| [28] | Akkarachiyasit, S.; Charoenlertkul, P.; Yibchok-anun, S. and Adisakwattana, S. (2010). Inhibitory activities of cyanidin and Its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int. J. Mol. Sci., 11:3387-3396. |