[1] | J. Blot, Infinite-horizon Pontryagin principles without invertibility, J. Nonlinear Convex Anal. 10 (2009) 177–189. |
[2] | C. Canuto, M. Y. Hussaini, A. Quarteroni and Zang, T. A. “Spectral Methods in Fluid Dynamic” Springer-Verlag, New York Inc., 1988. |
[3] | E.H. Doha, “The Ultraspherical Coefficients of Moments of a General Order Derivatives of an Infinitely Differentiable Function "J. Comput. and Appl. Math.,89, (1998)53-72. |
[4] | S.E. EL-gendi, "Chebyshev Solutions of Differential, Integral, and Integro -Differential Equations " Computer J., 12, (1969) 282-287. |
[5] | T. M. E1-Gindy & M.S. Salim, “Penalty function with partial quadratic interpolation technique in the constrained optimization problems”, Journal of Institute of Math. Computer Sci. 3 (1), (1990) 85-90. |
[6] | T. M. El-Gindy, T. M. , El-Hawary, H. M., Salim, M. S. and El-Kady, M. “A Chebyshev Approximation for Solving Optimal Control Problems” , Computers Math. Applic. 29 (6), (1995) 35-45. |
[7] | V. Lykina, S. Pickenhain, M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl. 340 (2008) 498–510. |
[8] | M. El-Kady and M. Biomy “Efficient Legendre Pseudospectral Method for Solving Integral and Integro-Differential Equations“ Commun Nonlinear Sci Numer Simulat 15 (2010) 1724–1739. |
[9] | M. El-Kady and M. Biomy, "Interactive Chebyshev-Legendre Algorithm for Linear Quadratic Optimal Regulator Systems", Int. J. of Wavelets, Multiresolution and Information Proc., Vol. 9, No. 3, (2011) 1–25. |
[10] | M. El-Kady, Efficient reconstructed Legendre algorithm for solving linear-quadratic optimal control problems Applied Mathematics Letters 25 (2012) 1034–1040 |
[11] | G.M. Elnagar, "State-control Spectral Chebyshev Parameterization for Linearly Constrained Quadratic Optimal Control Problems", J. Comput. And Applied Mathes. 97, (1997), pp 19-40. |
[12] | D. Gottlieb, and Orszag, S.A. “Numerical Analysis of Spectral Methods : Theory and Application" CBMS-NSF Regional Conference Series in Applied Mathematics , 26, Philadelphia: SIAM, 1977 |
[13] | G. Martin "A Newton Method for the Computation of Time-Optimal Boundary Controls of One-Dimensional Vibrating Systems” Journal of Comput. and Applied Math. 114 (2000) 103-119. |
[14] | S. Mashayekhi, Y. Ordokhani, M. Razzaghi, "Hybrid functions approach for nonlinear constrained optimal control problems",Commun Nonlinear Sci Numer Simulat 17 , (4) (2012) 1831-1843 |
[15] | A.B. Malinowska, N. Martins, D.F.M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett. 5 (2011) 41–53. |
[16] | A. A. Salama, "Numerical methods based on extended one-step methods for solving optimal control problems", Appl. Math. Comput. 183 (2006) 243–250. |
[17] | Szegö, "Orthogonal Polynomials", Am. Math. Soc. Colloq. Pub. ,23, 1985 |
[18] | E. Ocana Anaya, P. Cartigny, P. Loisel, Singular infinite horizon calculus of variations. Applications to fisheries management, J. Nonlinear Convex Anal. 10 (2009) 157–176. |
[19] | R. Van Dooren, J. and Vlassenbroeck, "A Chebyshev Technique for Solving Nonlinear Optimal Control Problems”, IEEE Trans. Automat. Contr., 33 (4), (1988) 333-339. |