[1] | D. Swaroop, J. K. Hedrick, P. P. Yip, J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems”, IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 1893-1899, 2000. |
[2] | B. Song, J. K. Hedrick, Dynamic surface control of uncertain nonlinear systems: an LMI approach, Springer, 2011. |
[3] | M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and adaptive control design, Wiley Interscience, 1995. |
[4] | S. K. Nguang, “Robust stabilization of a class of time-delay nonlinear systems”, IEEE Transactions on Automatic Control, vol. 45, no. 4, pp. 756-762, 2000. |
[5] | S. S. Ge, F. Hong, T. H. Lee, “Robust adaptive control of nonlinear systems with unknown time delays”, Automatica, vol. 41, pp. 1181-1190, 2005. |
[6] | T. P. Hedrick, P. P. Yip, “Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems”, International Journal of Control, vol. 71, no. 5, pp. 959-979, 1998. |
[7] | S. J. Yoo, J. B. Park, Y. Ho. Choi, “Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays”, IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2360-2365, 2007. |
[8] | T. P. Zhang, S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form”, Automatica, vol. 44, pp. 1895-1903, 2008. |
[9] | Q. Zhao, Y. Lin, “Adaptive dynamic surface control fure-feedback systems”, Int. J. Robust and Nonlinear Control, doi: 10.1002/rnc.1774, 2011. |
[10] | J.-J. Slotine, W. Li, Applied Nonlinear systems, 3rd Edition, Prentice Hall, 1991. |
[11] | H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, 2002. |
[12] | J. K. Hedrick, P. P. Yip, “Multiple sliding surface control: theory and application”, J. Dynamic Systems, Measurement, and Control, vol. 122, pp. 586-593, 2000. |
[13] | S. Boyd, l. El Ghaoui, E. Feron, V. Balakrishan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994. |
[14] | M. Grant, S. Boyd, “CVX: Matlab software for disciplined convex programming”, version 1.21, http://cvxr.com/cvx. |