| [1] | Basnet, R. B., Sung, A. H., & Liu, Q. (2012). Feature selection for improved phishing detection. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 252-261). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31087-4_27. |
| [2] | Buber, E., Dırı, B., & Sahingoz, O. K. (2017). Detecting phishing attacks from URL by using NLP techniques. In 2017 International conference on computer science and Engineering (UBMK) (pp. 337-342). IEEE. https://doi.org/10.1109/UBMK.2017.8093406. |
| [3] | Chiew, K. L., Chang, E. H., & Tiong, W. K. (2015). Utilisation of website logo for phishing detection. Computers & Security, 54, 16-26. https://doi.org/10.1016/j.cose.2015.07.006. |
| [4] | Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S., & Tiong, W. K. (2019). A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Information Sciences, 484, 153-166. https://doi.org/10.1016/j.ins.2019.01.064. |
| [5] | Feng, F., Zhou, Q., Shen, Z., Yang, X., Han, L., & Wang, J. (2018). The application of a novel neural network in the detection of phishing websites. Journal of Ambient Intelligence and Humanized Computing, 1-15. https://doi.org/10.1007/s12652-018-0786-3. |
| [6] | Govil, N., Agarwal, K., Bansal, A., & Varshney, A. (2020). A Machine Learning based Spam Detection Mechanism. In 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC) (pp. 954-957). IEEE. https://doi.org/0.1109/ICCMC48092.2020.ICCMC-000177. |
| [7] | Gualberto, E. S., De Sousa, R. T., Thiago, P. D. B., Da Costa, J. P. C., & Duque, C. G. (2020). From feature engineering and topics models to enhanced prediction rates in phishing detection. Ieee Access, 8, 76368-76385. https://doi.org/10.1109/ACCESS.2020.2989126. |
| [8] | Jain, A. K., & Gupta, B. B. (2018). Towards detection of phishing websites on client-side using machine learning based approach. Telecommunication Systems, 68(4), 687-700. https://doi.org/10.1007/s11235-017-0414-0. |
| [9] | Jeeva, S. C., & Rajsingh, E. B. (2016). Intelligent phishing url detection using association rule mining. Human-centric Computing and Information Sciences, 6(1), 1-19. https://doi.org/10.1186/s13673-016-0064-3. |
| [10] | Khonji, M., Jones, A., & Iraqi, Y. (2013). An empirical evaluation for feature selection methods in phishing email classification. International Journal of Computer Systems Science & Engineering, 28(1), 37-51. |
| [11] | Le, A., Markopoulou, A., & Faloutsos, M. (2011, April). Phishdef: Url names say it all. In 2011 Proceedings IEEE INFOCOM (pp. 191-195). IEEE. https://doi.org/10.1109/INFCOM.2011.5934995. |
| [12] | Li, J. H., & Wang, S. D. (2017, November). PhishBox: an approach for phishing validation and detection. In 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech) (pp. 557-564). IEEE. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.101. |
| [13] | Machado, L., & Gadge, J. (2017). Phishing Sites Detection Based on C4. 5 Decision Tree Algorithm. In 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCUBEA.2017.8463818. |
| [14] | Moghimi, M., & Varjani, A. Y. (2016). New rule-based phishing detection method. Expert systems with applications, 53, 231-242. https://doi.org/10.1016/j.eswa.2016.01.028. |
| [15] | Mohammad, R. M., Thabtah, F., & McCluskey, L. (2014). Predicting phishing websites based on self-structuring neural network. Neural Computing and Applications, 25(2), 443-458. https://doi.org/10.1007/s00521-013-1490-z. |
| [16] | Orunsolu, A. A., Sodiya, A. S., & Akinwale, A. T. (2019). A predictive model for phishing detection. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2019.12.005. |
| [17] | Patil, S., & Dhage, S. (2019). A methodical overview on phishing detection along with an organized way to construct an anti-phishing framework. In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) (pp. 588-593). IEEE. https://doi.org/10.1109/ICACCS.2019.8728356. |
| [18] | Peng, T., Harris, I., & Sawa, Y. (2018). Detecting phishing attacks using natural language processing and machine learning. In 2018 ieee 12th international conference on semantic computing (icsc) (pp. 300-301). IEEE. https://doi.org/10.1109/ICSC.2018.00056. |
| [19] | Qabajeh, I., & Thabtah, F. (2014). An experimental study for assessing email classification attributes using feature selection methods. In 2014 3rd International Conference on Advanced Computer Science Applications and Technologies (pp. 125-132). IEEE. https://doi.org/10.1109/ACSAT.2014.29. |
| [20] | Rashid, J., Mahmood, T., Nisar, M. W., & Nazir, T. (2020). Phishing Detection Using Machine Learning Technique. In 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH) (pp. 43-46). IEEE. https://doi.org/10.1109/SMART-TECH49988.2020.00026. |
| [21] | Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing detection from URLs. Expert Systems with Applications, 117, 345-357. https://doi.org/10.1016/j.eswa.2018.09.029. |
| [22] | Sanglerdsinlapachai, N., & Rungsawang, A. (2010). Using domain top-page similarity feature in machine learning-based web phishing detection. In 2010 Third International Conference on Knowledge Discovery and Data Mining (pp. 187-190). IEEE. https://doi.org/10.1109/WKDD.2010.108. |
| [23] | Shyni, C. E., Sundar, A. D., & Ebby, G. E. (2018). Phishing Detection in Websites using Parse Tree Validation. In 2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS) (pp. 1-4). IEEE. https://doi.org/10.1109/RAETCS.2018.8443961. |
| [24] | Singh, B., Kushwaha, N., & Vyas, O. P. (2014). A feature subset selection technique for high dimensional data using symmetric uncertainty. Journal of Data Analysis and Information Processing, 2(04), 95. https://doi.org/10.4236/jdaip.2014.24012. |
| [25] | Smadi, S., Aslam, N., & Zhang, L. (2018). Detection of online phishing email using dynamic evolving neural network based on reinforcement learning. Decision Support Systems, 107, 88-102. https://doi.org/10.1016/j.dss.2018.01.001. |
| [26] | Sonowal, G., & Kuppusamy, K. S. (2020). PhiDMA–A phishing detection model with multi-filter approach. Journal of King Saud University-Computer and Information Sciences, 32(1), 99-112. https://doi.org/10.1016/j.jksuci.2017.07.005. |
| [27] | Subasi, A., & Kremic, E. (2020). Comparison of adaboost with multiboosting for phishing website detection. Procedia Computer Science, 168, 272-278. https://doi.org/10.1016/j.procs.2020.02.251. |
| [28] | Tan, C. L., & Chiew, K. L. (2014). Phishing website detection using URL-assisted brand name weighting system. In 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) (pp. 054-059). IEEE. https://doi.org/10.1109/ISPACS.2014.7024424. |
| [29] | Toolan, F., & Carthy, J. (2010). Feature selection for spam and phishing detection. In 2010 eCrime Researchers Summit (pp. 1-12). IEEE. https://doi.org/10.1109/ecrime.2010.5706696. |
| [30] | Tuteja, S. K., & Bogiri, N. (2016). Email Spam filtering using BPNN classification algorithm. In 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT) (pp. 915-919). IEEE. https://doi.org/10.1109/ICACDOT.2016.7877720. |
| [31] | Thabtah, F., & Abdelhamid, N. (2016). Deriving correlated sets of website features for phishing detection: a computational intelligence approach. Journal of Information & Knowledge Management, 15(04), 1650042. https://doi.org/10.1142/S0219649216500428. |
| [32] | Varshney, G., Misra, M., & Atrey, P. K. (2016). A phish detector using lightweight search features. Computers & Security, 62, 213-228. https://doi.org/10.1016/j.cose.2016.08.003. |