[1] | H.S. Iqbal, Machine Learning: Algorithms, Real-World Applications and Research. SN Computer Science, Vol. 2, No. 60, pp. 1-2, 2021. |
[2] | S. Mahdavifar and A. Ghorban, Application of deep learning to cybersecurity: A survey, Neurocomputing, pp. 149-176, 2019. |
[3] | D. Sumeet and D. Xian, Data mining and machine learning in cybersecurity. Auerbach Publications, 2016. |
[4] | M.Z. Alom, V. Bontupalli and T.M Taha, Intrusion detection using deep belief networks, National Aerospace and Electronics Conference (NAECON), pp. 339–344, 2015. |
[5] | M. Macas and C. Wu, Review: Deep Learning Methods for Cybersecurity and Intrusion Detection Systems, IEEE LATINCOM, 2020. |
[6] | T. A Tang, L. Mhamdi, D. McLernon, A. Zaidi, S., Ghogho and A. Mounir, 2016, “Deep learning approach for network intrusion detection in software defined networking”, International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263. IEEE. |
[7] | K. Grosse., N. Papernot, P. Manoharan, M. Backes and P. McDaniel, Adversarial examples for malware detection, S.N. Foley, D. Gollmann, E. Snekkenes (Eds.), Computer Security – ESORICS 2017, Springer, Springer International Publishing, Cham, pp. 62-79, 2017. |
[8] | A.E. Cil, K. Yildiz and A. Buldu, Detection of ddos attacks with feed forw ard based deep neural network model, Expert Syst. Appl., Vol.169, pp. 114520, 2021. https://doi.org/10.1016/j.eswa.2020.114520. |
[9] | V. Hussain and J. Hnamte, Deep learning based intrusion detection system: software defined network, 2021 Asian Conference on Innovation in Technology (ASIANCON), IEEE, pp. 1-6, 2021. |
[10] | C.S Wu and S. Chen, A heuristic intrusion detection approach using deep learning model, International Conference on Information Networking (ICOIN), pp. 438-442, 2023. |
[11] | V. Hnamte and J. Hussain, Dependable intrusion detection system using deep convolutional neural network: A Novel framework and performance evaluation approach, Telematics and Informatics Reports, Vol.11, pp.100077, 2023. https://doi.org/10.1016/j.teler.2023.100077. |
[12] | R. Vinayakumar, K.P. Soman and P Poornachandran, 2017, “Applying convolutional neural network for network intrusion detection”, International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13-16 September 2017, DOI: 10.1109/ICACCI.2017.8126009. |
[13] | Kim Y., 2014, “Convolutional neural networks for sentence classification”, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, pp.1746-1751, arXiv: 1408.5882, 2014. https://doi.org/10.3115/v1/D14-1181. |
[14] | K. Wu, Z. Chen and A.W .Li, A novel intrusion detection model for a massive network using convolutional neural networks”. IEEE Access, Vol. 6, pp.50850 – 50859, 2018. |
[15] | Y. Xiao, C. Xing, T. Zhang and Z. Zhao, An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks, IEEE Access, Vol.7, pp. 42210 – 42219, 2019. DOI: 10.1109/ACCESS.2019.2904620. |
[16] | M. Zhu, K. Ye and C.Z. Xu, Network anomaly detection and identification based on deep learning methods, CLOUD 2018: 11th International Conference, Held as Part of the Services Conference Federation, pp. 219–234, USA, 2018. https://doi.org/10.1007/978-3-319-94295-7_15. |
[17] | M.S. ElSayed, N.A .Le Khac, M.A. Albahar and A. Jurcut, A novel hybrid model for intrusion detection systems in sdns based on cnn and a new regularization technique, J. Netw. Comput. Appl., Vol.191, pp. 103160, 2021. |
[18] | C. Xu, J. Shen, X. Du and F. Zhang, An Intrusion Detection System Using a D eep Neural Network With Gated Recurrent Units. IEEE Access, Vol.6, pp.48697-48707, 2018. |
[19] | S. Forrquue Ahmed, M. S. Bin Alam, M. Hassan, M.R. Rozbu, T. Ishtiak, N. Rafa, M. Mofijur, A.B.M Shawkat Ali and A.H. Gandomi, Deep learning modelling techniques: current progress, applications, advantages, and challenge, Artificial Intelligence Review, Vol.56, pages 13521–13617, 2023. |
[20] | K. Danqing, Y., Lv and C. Yuan-yuan, Short-term traffic flow prediction with LSTM recurrent neural network, IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1-6, 2017. |
[21] | Y. LeCun, P. Haffner, L. Bottou and Y. Bengio, Object recognition with Gradient-Based learning, Lecture Notes in Computer Science, (1681), pp 319–345, 1999. |
[22] | C.M. Hsu, M.Z. Azhari, H.Y. Hsieh, S.W. Prakosa and J.. S. Leu, Robust Network Intrusion Detection Scheme Using Long-Short Term Memory Based Convolutional Neural Networks, Mobile Networks and Applications, (26), pp. 1137–1144, 2021. https://doi.org/10.1007/s11036-020-01623-2. |
[23] | S, Hochreiter and J. Schmidhuber, Long short-term memory. Neural Comput., Vol.9, No.8, pp.1735–80, 1997. |
[24] | F. Weijiang and G. Naiyang, 2017, “Audio visual speech recognition with multimodal recurrent neural networks”. International Joint Conference on Neural Networks (IJCNN), Changsha, Hunan, P.R. China, pp. 4-8. |
[25] | S. Revathi and A. Malathi, A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection International. Journal of Engineering Research & Technology (IJERT), Vol.2, No.12, pp. 1848-1852, 2013. |
[26] | R. Bala and R. Nagpal, A review on KDD CUP99 AND NSL-KDD dataset , International Journal of Advanced Research in Computer Science, Udaipur, Vol.10, No.2, pp. 64-67, 2019. DOI:10.26483/ijarcs.v10i2.6395. |
[27] | R.A.R. Mahmood, A.,H. Abdi and M. Hussin, Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers, Baghdad Science Journal, Vol.18, No.2, P-ISSN: 2078-8665, 2021. DOI: http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).0884. |
[28] | A Javaid, Q., Niyaz, W. Sun and M. Alam, A deep learning approach for network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pp. 21-26, 2016. |
[29] | M. Tavallaee, E. Bagheri, W. Lu and A.A. Ghorbani, 2009, A “Detailed Analysis of the KDD CUP 99 DataSet”. Proceedings of the Second IEEE Symposium on Computational Intelligence for Security and Defence Applications 2009, pp. 1-6, Ottawa, 8-10 July. |
[30] | I. Bhupendra and A. Yadav, Performance analysis of NSL-KDD dataset using ANN, Communication. Engneering. System IEEE pp. 92–96, 2015. |
[31] | G. Sandeep, K. G. Mirnal and S. Aroj., Deep learning approach onnetwork intrusion detection system using nsl-kdd dataset, International Journal of Computer Network and Information Security (IJCNIS), Vol.11, No.3, pp. 8–14, 2018. |
[32] | C.M. Hsu, Y. Hsieh and S.W. Parakosa, Using Long-Short-Term Memory Based Convolutional Neural Networks for Network Intrusion Detection: 11th EAI International Conference, WiCON 2018, Taipei, Taiwan, 2019. |
[33] | P.S. Muhuri, P. Chatterjee, X. Yuan, K. Roy and A. Esterline, Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks, Information, Vol.11, No.5, pp. 243, 2020. |
[34] | C. Hwang, J.. Hwang, J. Kwak and T. Lee, Platform-independent malware analysis applicable to Windows and Linux environments. Electronics 9, 5, 793, 2020. |
[35] | A. Yazdinejad, H. Haddad Pajouh, A. Dehghantanha, R.M Parizi, G. Srivastava and M.Y Chen., Cryptocurrency malware hunting: A deep Recurrent Neural Network approach, Applied Soft Computing, 96, 2020. |
[36] | D. Dang, F. Di Troia and M. Stamp, 2021, “Malware classification using long short-term memory models”, ICISSP 2021 - Proceedings of the 7th International Conference on Information Systems Security and Privacy, pp.743-752. |
[37] | K.S. Satheesh and T. Ciza, 2021, “MemDroid - LSTM Based Malware Detection Framework for Android Devices”, 2021 IEEE Pune Section International Conference (PuneCon), Pune, India, 2021. |
[38] | Y. Ban, S. Lee, D. Song, H. Cho and .L.H. Yi, “FAM: Featuring Android Malware for Deep Learning-Based Familial Analysis”, IEEE Access, 10, pp. 20008- 20018, 2022. |
[39] | M.S. Akhtar and T. Feng, Detection of Malware by Deep Learning as CNN-LSTM Machine Learning Techniques in Real Time, Symmetry, Vol.14, No.11, pp. 2308, 2022. |
[40] | N.K. Gyamfi, N. Goranin, D. Ceponis and H.A. Cenys., Malware Detection Using Convolutional Neural Network, A Deep Learning Framework: Comparative Analysis, Journal of internet services and information security.. Innovative Information Science & Technology Research Group (ISYOU), Vol.12, No.4, pp. 102-115, 2022. |
[41] | M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, H. Janicke, RDTIDS: Rules and Decision Tree-Based Intrusion Detection System for Internet-of-Things Networks, Future Internet, Vol. 12, No. 44, pp. 1- 14, 2020. |
[42] | N. Kunhare, R. Tiwari and J. Dhar, Particle swarm optimization and feature selection for intrusion detection system, Sadhana, Vol. 45, No. 109, pp. 1-14, 2020. |