[1] | J. DE WIT, "Dynamic detection of mobile malware using real-life data and machine learning", Masters Thesis, University of Twente, 2018. |
[2] | K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The evolution of Android malware and Android analysis techniques”, ACM Computing Surveys (CSUR), vol. 49, no. 4, p. 76, 2017. |
[3] | https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/ [accessed 11th February 2022]. |
[4] | https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/ [accessed 11th February 2022]. |
[5] | Sophos Ltd, SophosLabs 2018 Malware Forecast. Oxford, UK: Abingdon Science Park, 2017. |
[6] | X. Jiang, B. Mao, J. “Guan and X. Huang, "Android Malware Detection Using F”ne-Grained Features", Scientific Programming, vol. 2020, pp. 1-2, 2020. Available: https://www.hindawi.com/journals/sp/2020/5190138/. [Accessed” 24 June 2020]. |
[7] | "Mobile Operating System Market Share Worldwide | StatCounter Global Stats", StatCounter Global Stats, 2020. [Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide. [Accessed: 23- May- 2020]. |
[8] | Sophos Ltd, SophosLabs 2018 Malware Forecast. Oxford, UK: Abingdon Science Park, 2017. A. Karnik, “Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999. |
[9] | N. Lu, D. Li, W. Shi, P. Vijayakumar, F. Picc“alli and V. Chang, "An efficient combined deep neural network based malware detection framewo”k in 5G environment", Computer Networks, vol. 189, p. 107932, 2021. Available: 10.1016/j.comnet.2021.107932 [Accessed 25 June 2022]. |
[10] | J. Gao, L. Li, P. Kong, T. F. Bissyandé and J. Klein, "Should You Consider Adware as Malware in Your Study?" 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), 2019, pp. 604-608, doi: 10.1109/SANER.2019.8668010. |
[11] | Waizel. A, "Improving the Detection of New Malware Classes” y Transfer Learning", Master of Science, BEN-GURION UNIVERSITY OF THE NEGEV, 2015. |
[12] | Mohanta, A. and Saldanha, A., 2020. Malware analysis and detection engineering. 1st ed. New–York: Apress, pp.5 - 7. |
[13] | Avast Reports Continued Dominance of Adware Among Android Threats. 2021. Avast Reports Continued Dominance of Adware Among Android Threats. [online] Available at: <https://press.avast.com/avast-reports-continued-dominance-of-adware-among-android-threats> [Accessed 16 June 2022. |
[14] | S. Bagui and D. Benson, "Android Adware Detection Using Machine Learning", International Journal of Cyber Research and Education, vol. 3, no. 2, pp. 1-19, 2021. Available: 10.4018/ijcre.2021070101. |
[15] | Koli, J. D. “RanDroid: Android malware detection using random machine learning classifiers.” 2018 Technologies for Smart-City Energy Security and Power (ICSESP). IEEE, 2018. |
[16] | Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973; 3(6): 610-621. |
[17] | L. Nataraj, S. Karthikeyan, G. Jaco and B. Manjunath, "Malware images”, Proceedings of the 8th International Symposium on Visualization–for Cyber Security - VizSec '11, 2011. Available: 10.1145/2016904.2016908. |
[18] | Jung, J., Choi, J., Cho, S., Han, S., Park, M. and Hwang, Y., 2018. Android malware detection using convolutional neural networks and data section images. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. |
[19] | J. Gennissen, L. Cavallaro, V. Moonsamy, and L. Batina, Gamut: sifting through images to detect android malware, Bachelor thesis, Royal Holloway University, London, UK, 2017. |
[20] | Deepak Thakur, Jaiteg Singh, Parvez Faruki, Tanya Gera, Classification of Android Malware using its Image Sections. International Journal of Advanced Trends in Computer Science and Engineering, volume 9 No. 4, July - August, 2020, doi.org/10.30534/ijatcse/2020/288942020. |
[21] | Suresh, S., 2018. Analyzing Android Adware. Master of Science (MS). San Jose State University. |
[22] | M. Alani and A. Awad, "AdStop: Efficient flow-based mobile adware detection using machine learning", Computers & amp; Security, vol. 117, p. 102718, 2022. Available: 10.1016/j.cose.2022.102718. |
[23] | Dobhal, D., Das, P., Aswal, K., 2019. Detection of Android Adwares by using Machine Learning Algorithms. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8 Issue-4S, April 2019. |
[24] | Mohammed, T. M., Nataraj, L., Chikkagoudar, S., Chandrasekaran, S., & Manjunath, B. S. (2021). Malware Detection Using Frequency Domain-Based Image Visualization and Deep Learning. arXiv preprint arXiv: 2101.10578. |
[25] | Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., Pham, D. T., EfficientNet Convolutional Neural Networks-based Android Malware Detection”, Computers & Security (2022), doi: https://doi.org/10.1016/j.cose.2022.102622. |
[26] | Zhang,W.; Luktarhan, N.; Ding, C.; Lu, B. Android Malware Detection Using TCN with Bytecode Image. Symmetry, 2021, 13, 1107. https://doi.org/10.3390/sym13071107. |
[27] | Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, Rasool Fatemi, Dima Alhadidi, Ali A. Ghorbani; Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning, The 18th IEEE International Conference on Dependable, Autonomic, and Secure Computing (DASC), Aug. 17-24, 2020. |
[28] | Samaneh Mahdavifar, Dima Alhadidi, and Ali A. Ghorbani (2022). Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label Stacked Auto-Encoder, Journal of Network and Systems Management 30 (1), 1-34. |
[29] | “ImageNet,” www.image-net.org. https://www.image-net.org/index.php. Accessed 1st January 2022. |
[30] | Arash Habibi Lashkari, Andi Fitriah A. Kadir, Laya Taheri, and Ali A. Ghorbani, “Toward Developing a Systematic Approach to Generate Benchmark Android Malware Datasets and Classification”, In the proceedings of the 52nd IEEE International Carnahan Conference on Security Technology (ICCST), Montreal, Quebec, Canada, 2018. |
[31] | Bhodia N, Prajapati P, Troia FD, Stamp M. Transfer learning for image-based malware classification. ArXiv 2019. arXiv: 1903. 11551. |
[32] | D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei and Q. Zheng, "IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture", Computer Networks, vol. 171, p. 107138, 2020. Available: 10.1016/j.comnet.2020.107138. |