[1] | Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention National Heart, Lung, and Blood Institute/World Health Organization Work Shop Report. Bethesda Md NIH-update 2012. |
[2] | MacDowell, A.L., and Bacharier, L.B., 2005, Infectious triggers of asthma. Immunol Allergy Clin North Am; 25:45–66. |
[3] | Byrne, G.I., and Ojcius, D.M., 2004, Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol; 2(10): 802–8. |
[4] | Hahn, D.L., Dodge, R.W., and Golubjatnikov, R., 1991, Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma.J Amer Med Assoc; 266(2): 225-30. |
[5] | Agarwal, A., and Chander,Y., 2008, Chronic Chlamydia pneumoniae infection and bronchial asthma: Is there a link? Ind J Med Microbiol; 26(4): 338-41. |
[6] | Cosentini, R., Tarsia, P., Canetta, C., Graziadei, G., Brambilla, A.M., and Aliberti, S., et al., 2008, Severe asthma exacerbation: role of acute Chlamydophila pneumoniae and Mycoplasma pneumoniae infection. Respir Res; 9(48). doi: 10.1186/1465-9921-9-48. |
[7] | Bergeron, C., Tulic, M.K., and Hamid, Q., 2010, Airway remodeling in asthma: From benchside to clinical practice. Can Respir J; 17(4): 85–93. |
[8] | Katarzyna, G., Malgorzata, L., Wioletta, Z., and Tomasz, G., 2016, Airway remodeling in chronic obstructive pulmonary disease and asthma: the role of matrix metalloproteinase-9. Arch Immunol Ther Exp (Warsz); 64: 47–55. |
[9] | Nagase, H., Visse, R., and Murphy, G., 2006, Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res; 69: 562–73. |
[10] | El-Moneum, N.A., Mohamed-Hussein, A.T., Mohammed, E.F., El- Moneum, O.A., Mohamed, H.O., and Tammam, M.M., 2015, Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) as non-invasive biomarkers of remodeling in asthma. J Pulm Respir Med; 5:266. doi:10.4172/2161-105X.1000266. |
[11] | Derrick, T., Luthert, P.J., Jama, H., Hu, V.H., Massae, P., and Essex, D., et al., 2016, Increased epithelial expression of CTGF and S100A7 with elevated subepithelial expression of IL-1β in trachomatous trichiasis. PLoS Negl Trop Dis; 10(6): e0004752. doi:10.1371/journal.pntd.0004752. |
[12] | Haggerty, C.L., Gottlieb, S.L., Taylor, B.D., Low, N., Xu, F., and Ness, R.B., 2010, Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis 2010; 201:134–55. |
[13] | Park, C.S., Kim, T.B., Moon, K.A., Bae, Y.J., Lee, H.R., and Jang, M.K., et al., 2010, Chlamydophila pneumonia enhances secretion of VEGF, TGF-β and TIMP-1 from human bronchial epithelial cells under Th2 dominant microenvironment. Allergy Asthma Immunol Res; 2: 41–7. |
[14] | Park, C.S., Lee, Y.S., Kwon, H.S., Lee, T., Kim, T.B., and Moon, K.A., et al., 2012, Chlamydophila pneumoniae inhibits corticosteroid induced suppression of metalloproteinase-9 and tissue inhibitor metalloproteinase-1 secretion by human peripheral blood mononuclear cells. J Med Microbiol; 61:705-11. |
[15] | American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma, 1987. AM Rev Respir Dis; 136: 225-44. |
[16] | Pellegrino, R., Viegi, G., Brusasco, G., Crapo, R., Burgos, F., and Casaburi, F., et al., 2005, Interpretative strategies for lung function tests series “ATS/ERS task force: standardisation of lung function testing”. Eur Respir J; 26: 948–68. |
[17] | American Thoracic Society. Guidelines for methacholine and exercise challenge testing, 2000, Am J Respir Crit Care Med; 161: 309-29. |
[18] | Miyashita, N., Kawai, Y., Tanaka, T., Akaike, H., Teranishi, H., and Wakabayashi, T., et al., 2015, Antibody responses of Chlamydophila pneumoniae pneumonia: Why is the diagnosis of C. pneumoniae pneumonia difficult? J Infect Chemo; 21(7): 483-550. |
[19] | Baines, K.J., 2007, Molecular pathogenesis of noneosinophilic asthma. B. BiomedSci (Hons) PHD thesis, University of Newcastle, Faculty of Health, School of Biomedical Sciences. |
[20] | Piirila, P., Lauhio, A., Majuri, L., Meuronen, A., Myllarniemi, M., and Tervahartiala, T., et al., 2010, Matrix metalloproteinases-7, -8, -9 and TIMP-1 in the follow-up of diisocyanate-induced asthma. Eur J Allergy Clin Immun; 61–8. |
[21] | Kumar, S., and Hammerschlag, M.R., 2007, Acute respiratory infection due to Chlamydia pneumoniae: Current status of diagnostic methods. Clin Infect Dis; 44: 568–76. |
[22] | Strachan, D.P., Carrington, D., Mendall, M., Butland, B.K., Yarnell, J.W.G., and Elwood, P., 2000, Chlamydia pneumoniae serology, lung function decline, and treatment for respiratory disease. Am J Respir Crit Care Med; 161(2): 493-7. |
[23] | Foschino, B.M., Resta, O., Aliani, M., Guido, P., Izzo, C., Logroscino, C., et al, 2002, Seroprevalence of chronic Chlamydia pneumoniae infection in patients affected by chronic stable asthma. Clin Microbiol Infect; 8(6): 358-62. |
[24] | Xepapadaki, P., Koutsoumpari, I.V., Karagianni, C., and Papadopoulos, N.G., 2008, Atypical bacteria and macrolides in asthma. Allergy Asthma Clin Immunol; 4:111-6. |
[25] | Dejsomritrutai, W., Siritantikorn, S., and Nana, A., 2009, Asthma, bronchial hyper-responsiveness and Chlamydophila (Chlamydia) pneumoniae infection in adult Thai population. J Med Assoc Thai; 92: 30-7. |
[26] | Mohamed, G.M., Farres, M.N., and Mahmoud, H., 2012, Interplay between matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in acute asthma exacerbation and airway remodeling. Egyptian Journal of Chest Diseases and Tuberculosis; 61:35-9. |
[27] | Wu, S.M., Li, C.E., Cai, R.P., Zhang, Q., and Xu, Y.J., 2012, Airway remodeling assessed by high resolution computed tomography in patients with asthma: relationship to biological markers in induced sputum. Zhonghua Jie He He Hu Xi Za Zhi; 35(12): 892-6. |
[28] | Xin, X.F., Zhao, M., Li, Z.L., Song, Y., and Shi, Y., 2007, Metalloproteinase-9/tissue inhibitor of metalloproteinase-1 in induced sputum in patients with asthma and chronic obstructive pulmonary disease and their relationship to airway inflammation and airflow limitation. Zhonghua Jie He He Hu Xi Za Zhi; 30(3):192-6. |
[29] | Han, Z., Junxu, and Zhong, N., 2003, Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respir Med; 97: 563–7. |
[30] | Todorova, L., Bjermer, L., Miller-Larsson, A., and Westergren-Thorsson, G., 2010, Relationship between matrix production by bronchial fibroblasts and lung function and AHR in asthma. Respir Med; 104(12): 1799–808. |