[1] | Penuela OA, Palomino F, Gómez LA (2016): Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells. Rev Bras Hematol Hemoter. 38(1):15-20. |
[2] | Nagababu E, Scott AV, Johnson DJ, Dwyer IM, Lipsitz JA, Barodka VM, Berkowitz DE, Frank SM (2016): Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients. Transfusion. 56(5): 1101-1111. |
[3] | Bercovitz RS and Josephson CD (2016): Transfusion Considerations in Pediatric Hematology and Oncology Patients. Hematol Oncol Clin North Am. 30(3): 695-709. |
[4] | Tyrrell CT, and Bateman ST (2012): Critically ill children: to transfuse or not to transfuse packed red blood cells, that is the question. Pediatr Crit Care Med. 13(2):204-9. |
[5] | Fontaine MJ, Chung YT, Erhun F, Goodnough LT (2010): Age of blood as a limitation for transfusion: potential impact on blood inventory and availability. Transfusion. 50 (10): 2233-9. |
[6] | Grisendi G, Finetti E, Manganaro D, Cordova N, Montagnani G, Spano C, Prapa M, Guarneri V, Otsuru S, Horwitz EM, Mari G, Dominici M (2015): Detection of microparticles from human red blood cells by multiparametric flow cytometry. Blood Transfus. 13(2):274-80. |
[7] | Flatt JF, Bawazir WM, Bruce LJ (2014): The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol. 5:(214)1-12. |
[8] | György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás E (2011): Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. Cell Mol Life Sci. 68 (16):2667-88. |
[9] | Liu C1, Zhao W, Christ GJ, Gladwin MT, Kim-Shapiro DB. Nitric oxide (2013): scavenging by red cell microparticles. Free Radic Biol Med. 65:1164-73. |
[10] | Gao Y, Lv L, Liu S, Ma G, Su Y (2013): Elevated levels of thrombin-generating microparticles in stored red blood cells. Vox Sang. 105 (1):11-7. |
[11] | Nielsen MH, Beck-Nielsen H, Andersen MN, Handberg A. (2014): A flow cytometric method for characterization of circulating cell-derived microparticles in plasma. J Extracell Vesicles. 2014; 3. |
[12] | Kent MW, Kelher MR, West FB, Silliman CC (2014): The pro-inflammatory potential of microparticles in red blood cell units. Transfusion. 24(3):176-81. |
[13] | Lutz HU, and Bogdanova A (2013): Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 4:387. |
[14] | Lannan KL, Sahler J, Spinelli SL, Phipps RP, Blumberg N (2013): Transfusion immunomodulation--the case for leukoreduced and (perhaps) washed transfusions. Blood Cells Mol Dis.; 50(1): 61-68. |
[15] | Sonker A, Dubey A, Chaudhary R (2014): Evaluation of a red cell leukofilter performance and effect of buffy coat removal on filtration efficiency and post filtration storage. Indian J Hematol Blood Transfus. 30(4): 321-327. |
[16] | Dinkla S, Peppelman M, Van Der Raadt J, Atsma F, Novotný VM, Van Kraaij MG, Joosten I, Bosman GJ (2014): Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality. Blood Transfus. 12(2): 204-209. |
[17] | Salzer U, Zhu R, Luten M, Isobe H, Pastushenko V, Perkmann T., Hinterdorfer P, Bosman GJ (2008): Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfus. 48(3): 451–462. |
[18] | Sugawara A, Nollet KE, Yajima K, Saito S, Ohto H (2010): Preventing platelet-derived microparticle formation--and possible side effects-with prestorage leukofiltration of whole blood. Arch Pathol Lab Med. 134(5): 771-5. |
[19] | Nollet KE, Saito S, Ono T, Ngoma A, Ohto H (2013): Microparticle formation in apheresis platelets is not affected by three leukoreduction filters. Transfusion. 53(10): 2293-2298. |
[20] | Whillier S, Raftos JE, Sparrow RL, Kuchel PW (2011): The effects of long-term storage of human red blood cells on the glutathione synthesis rate and steady-state concentration. Transfus. 51(7): 1450-9. |
[21] | Chaudhary R and, Katharia R (2012): Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage. Blood Transfus.; 10(1): 59-62. |
[22] | Kamel N, Goubran F, Ramsis N, Ahmed AS (2010): Effects of storage time and leucocyte burden of packed and buffy-coat depleted red blood cell units on red cell storage lesion. Blood Transfus. 8(4):260-6. |
[23] | Antonelou MH, Tzounakas VL, Velentzas AD, Stamoulis KE, Kriebardis AG, Papassideri IS (2012): Effects of pre-storage leukoreduction on stored red blood cells signaling: a time-course evaluation from shape to proteome. J Proteomics. 76: 220-38. |
[24] | Bosman G J, Lasonder E, Groenen-Döpp Y A, Willekens F L, Werre J M (2012): The proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and vesiculation. J. Proteomics. 76:203–210. |
[25] | Blasi B, D'Alessandro A, Ramundo N, Zolla L (2012): Red blood cell storage and cell morphology. Transfus Med. 22(2):90-6. |
[26] | Phelan HA, Gonzalez RP, Patel HD, Caudill JB, Traylor RK, Yancey LR, Sperry JL, Friese RS, Nakonezny PA (2010): Prestorage leukoreduction ameliorates the effects of aging on banked blood. J Trauma. 69:330–337. |
[27] | Lu C, Shi J, Yu H, Hou J, Zhou J (2011): Procoagulant activity of long-term stored red blood cells due to phosphatidylserine exposure. Transfus Med. 21(3): 150-7. |
[28] | Sparrow RL, Healey G, Patton KA, Veale MF (2006): Red blood cell age determines the impact of storage and leukocyte burden on cell adhesion molecules, glycophorin A and the release of annexin V. Transfus Apher Sci. 34(1):15-23. |
[29] | Liu C, Liu X, Janes J, Stapley R, Patel RP, Gladwin MT, Kim-Shapiro DB (2014): Mechanism of faster NO scavenging by older stored red blood cells. Redox Biol. 2:211-219. |
[30] | Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, Blackstone EH (2008): Duration of red-cell storage and complications after cardiac surgery.N Engl J Med. 358(12): 1229-1239. |
[31] | Gauvin F, Spinella PC, Lacroix J, Choker G, Ducruet T, Karam O, Hébert PC, Hutchison JS, Hume HA, Tucci M, Canadian Critical Care Trials Group and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; (2010): Association between length of storage of transfused red blood cells and multiple organ dysfunction syndrome in pediatric intensive care patients. Transfus. 50(9):1902-13. |
[32] | Weinberg JA, McGwin G Jr, Vandromme MJ, Marques MB, Melton SM, Reiff DA, Kerby JD, Rue LW 3rd (2010): Duration of red cell storage influences mortality after trauma. J Trauma 69: 1427–1432. |
[33] | Callan MB, Patel RT, Rux AH, Bandyopadhyay S, Sireci AN, O'Donnell PA, Ruane T, Sikora T, Marryott K, Sachais BS, Hod EA (2013): Transfusion of 28-day-old leucoreduced or non-leucoreduced stored red blood cells induces an inflammatory response in healthy dogs. Vox Sang. 105(4): 319-327. |
[34] | Lacroix J, Hébert PC, Fergusson DA, Tinmouth A, Cook DJ, Marshall JC, Clayton L, McIntyre L, Callum J, Turgeon AF, Blajchman MA, Walsh TS, Stanworth SJ, Campbell H, Capellier G, Tiberghien P, Bardiaux L, van de Watering L, van der Meer NJ, Sabri E, Vo D (2015): ABLE Investigators; Canadian Critical Care Trials Group. Age of transfused blood in critically ill adults.N Engl J Med. 372(15):1410-1418. |
[35] | Cohen B and Matot I (2013): Aged erythrocytes: a fine wine or sour grapes? British Journal of Anaesthesia. 111 (S1): i62–i70. |
[36] | Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, Verhoeven AJ, de Korte D, van Bruggen R (2013): Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol. 160(3): 377-86. |
[37] | Wolfs JL, Comfurius P, Bekers O, Zwaal RF, Balasubramanian K, Schroit AJ, Lindhout T, Bevers EM (2009): Direct inhibition of phospholipid scrambling activity in erythrocytes by potassium ions. Cell Mol Life Sci. 66(2): 314-23. |
[38] | Mandal D, Mazumder A, Das P, Kundu M, Basu J (2005): Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J. Biol. Chem. 280:39460–39467. |