[1] | S. Członka, A. Strąkowska, P. Pospiech, et K. Strzelec, «Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams», Materials, vol. 13, n° 7, p. 1781, avr. 2020, doi: 10.3390/ma13071781. |
[2] | A. Alptekin et H. Çallioğlu, «Mechanical properties of starch bio-composite and molded pulp samples manufactured using pine and eucalyptus fibers», Polym. Polym. Compos., vol. 31, p. 09673911231161983, nov. 2023, doi: 10.1177/09673911231161983. |
[3] | T. G. T. Pereira, J. F. Mendes, J. E. Oliveira, J. M. Marconcini, et R. F. Mendes, «Effect of reinforcement percentage of eucalyptus fibers on physico-mechanical properties of composite hand lay-up with polyester thermosetting matrix», J. Nat. Fibers, vol. 16, n° 6, p. 806‑816, août 2019, doi: 10.1080/15440478.2018.1439426. |
[4] | M. Ramirez et al., «Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and handsheet properties», J. Wood Chem. Technol., vol. 29, n° 1, p. 43‑58, 2009. |
[5] | J. C. Del Río, A. Gutiérrez, M. Hernando, P. Landín, J. Romero, et Á. T. Martínez, «Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS», J. Anal. Appl. Pyrolysis, vol. 74, n° 1‑2, p. 110‑115, août 2005, doi: 10.1016/j.jaap.2004.10.010. |
[6] | H. Abral et al., «Alkali Treatment of Screw Pine (Pandanus Odoratissimus) Fibers and Its Effect on Unsaturated Polyester Composites», Polym.-Plast. Technol. Eng., vol. 51, n° 1, p. 12‑18, janv. 2012, doi: 10.1080/03602559.2011.593090. |
[7] | M. S. Huda, L. T. Drzal, A. K. Mohanty, et M. Misra, «Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites», Compos. Interfaces, vol. 15, n° 2‑3, p. 169‑191, janv. 2008, doi: 10.1163/156855408783810920. |
[8] | M. Y. Hashim, A. M. Amin, O. M. F. Marwah, M. H. Othman, M. R. M. Yunus, et N. Chuan Huat, «The effect of alkali treatment under various conditions on physical properties of kenaf fiber», J. Phys. Conf. Ser., vol. 914, p. 012030, oct. 2017, doi: 10.1088/1742-6596/914/1/012030. |
[9] | P. K. Kushwaha et R. Kumar, «Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites», J. Reinf. Plast. Compos., vol. 30, n° 1, p. 73‑85, janv. 2011, doi: 10.1177/0731684410383064. |
[10] | X. Li, L. G. Tabil, et S. Panigrahi, «Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review», J. Polym. Environ., vol. 15, n° 1, p. 25‑33, févr. 2007, doi: 10.1007/s10924-006-0042-3. |
[11] | H. Daoudi, F.-Z. Semlali, Z. Kassab, E.-H. Ablouh, M. Sadek, et M. E. Achaby, «Enhanced performance of recycled polyethylene-integrated trilayer low-density polyethylene/linear low-density polyethylene heat-shrink films for brick packaging: A comprehensive study», J. Reinf. Plast. Compos., p. 07316844241272979, août 2024, doi: 10.1177/07316844241272979. |
[12] | R. T. Bachmann et S. K. Ong, «Characteristics and degradation of carbon low-density polyethylene (LDPE) composites in the environment», in Char-based Composites, Elsevier, 2025, p. 301-341. doi: 10.1016/B978-0-443-15403-4.00013-7. |
[13] | S. Wdm, «Effect of Artocarpus Heterophyllus Latex on Properties of Calcium Carbonate Filled Natural Rubber/Low Density Polyethylene/ Waste Polyethylene Composites», Phys. Sci. Biophys. J., vol. 4, n° 1, 2020, doi: 10.23880/PSBJ-16000140. |
[14] | H. Daoudi, F.-Z. Semlali, Z. Kassab, E.-H. Ablouh, M. Sadek, et M. E. Achaby, «Enhanced performance of recycled polyethylene-integrated trilayer low-density polyethylene/linear low-density polyethylene heat-shrink films for brick packaging: A comprehensive study», J. Reinf. Plast. Compos., p. 07316844241272979, août 2024, doi: 10.1177/07316844241272979. |
[15] | F. Stan, N.-V. Stanciu, C. Fetecau, et I.-L. Sandu, « Mechanical Recycling of Low-Density Polyethylene/Carbon Nanotube Composites and its Effect on Material Properties », in Volume 2: Processes; Materials, Erie, Pennsylvania, USA: American Society of Mechanical Engineers, juin 2019, p. V002T04A005. doi: 10.1115/MSEC2019-2929. |
[16] | A. S. Luyt, J. A. Molefi, et H. Krump, «Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites», Polym. Degrad. Stab., vol. 91, no 7, p. 1629-1636, juill. 2006, doi: 10.1016/j.polymdegradstab.2005.09.014. |
[17] | J. George, S. S. Bhagawan, et S. Thomas, «Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre», Compos. Sci. Technol., vol. 58, n° 9, p. 1471-1485, sept. 1998, doi: 10.1016/S0266-3538(97)00161-9. |
[18] | K. Joseph, S. Thomas, et C. Pavithran, «Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites», Compos. Sci. Technol., vol. 53, n° 1, p. 99-110, janv. 1995, doi: 10.1016/0266-3538(94)00074-3. |
[19] | J. George, S. S. Bhagawan, N. Prabhakaran, et S. Thomas, «Short pineapple-leaf-fiber-reinforced low-density polyethylene composites», J. Appl. Polym. Sci., vol. 57, n° 7, p. 843-854, août 1995, doi: 10.1002/app.1995.070570708. |
[20] | A. Koffi, F. Mijiyawa, D. Koffi, F. Erchiqui, et L. Toubal, «Mechanical Properties, Wettability and Thermal Degradation of HDPE/Birch Fiber Composite», Polymers, vol. 13, n° 9, p. 1459, avr. 2021, doi: 10.3390/polym13091459. |
[21] | Ruijun Gu et B. V. Kokta, «Effect of Independent Variables on Mechanical Properties and Maximization of Aspen—Polypropylene Composites», J. Thermoplast. Compos. Mater., vol. 21, n° 1, p. 27‑50, janv. 2008, doi: 10.1177/0892705707085347. |
[22] | Ruijun Gu et B. V. Kokta, «Mechanical Properties of PP Composites Reinforced with BCTMP Aspen Fiber», J. Thermoplast. Compos. Mater., vol. 23, n° 4, p. 513‑542, juill. 2010, doi: 10.1177/0892705709355232. |
[23] | F. Mijiyawa, D. Koffi, B. V. Kokta, et F. Erchiqui, «Formulation and tensile characterization of wood–plastic composites: Polypropylene reinforced by birch and aspen fibers for gear applications», J. Thermoplast. Compos. Mater., vol. 28, n° 12, p. 1675‑1692, déc. 2015, doi: 10.1177/0892705714563120. |
[24] | M. Tufan, T. Güleç, E. Peşman, et N. Ayrilmis, «Technological and Thermal Properties of Thermoplastic Composites Filled with Heat-treated Alder Wood», BioResources, vol. 11, n° 2, p. 3153-3164, févr. 2016, doi: 10.15376/biores.11.2.3153-3164. |
[25] | X. Ma, J. Yu, et J. F. Kennedy, «Studies on the properties of natural fibers-reinforced thermoplastic starch composites», Carbohydr. Polym., vol. 62, n° 1, p. 19‑24, oct. 2005, doi: 10.1016/j.carbpol.2005.07.015. |
[26] | E. F. Santos, R. S. Mauler, et S. M. B. Nachtigall, «Effectiveness of Maleated- and Silanized-PP for Coir Fiber-Filled Composites», J. Reinf. Plast. Compos., vol. 28, n° 17, p. 2119‑2129, sept. 2009, doi: 10.1177/0731684408091704. |
[27] | M. Werchefani, A. Elloumi, C. Lacoste, H. Belguith, A. Gargouri, et C. Bradai, «Influence des traitements chimique et biologiques sur les propriétés mécaniques des bio-composites Cereplast-fibres d’Alfa», présenté à 23e congres Francais de mecanique, Lille, 2017, p. 9. [En ligne]. Disponible sur: https://hal.science/hal-03465796/document |
[28] | D. M. Panaitescu, M. Iorga, Z. Vuluga, D. Donescu, M. Dan, et S. Serban, «L’EFFET DE L’INTERFACE DANS LES COMPOSITES DE FIBRES NATURELLES ET DE MATIÈRES PLASTIQUES», vol. 52, p. 409‑014, 2007. |
[29] | Ruijun Gu et B. V. Kokta, «Maximization of the Mechanical Properties of Birch-Polypropylene Composites with Additives by Statistical Experimental Design», J. Thermoplast. Compos. Mater., vol. 23, n° 2, p. 239‑263, mars 2010, doi: 10.1177/0892705708103402. |
[30] | F. Mijiyawa, D. Koffi, B. V. Kokta, et F. Erchiqui, «Formulation and tensile characterization of wood–plastic composites: Polypropylene reinforced by birch and aspen fibers for gear applications», J. Thermoplast. Compos. Mater., vol. 28, n° 12, p. 1675‑1692, déc. 2015, doi: 10.1177/0892705714563120. |
[31] | A. Koffi, F. Mijiyawa, D. Koffi, F. Erchiqui, et L. Toubal, «Mechanical Properties, Wettability and Thermal Degradation of HDPE/Birch Fiber Composite», Polymers, vol. 13, n° 9, p. 1459, avr. 2021, doi: 10.3390/polym13091459. |
[32] | A. Benyahia, A. Merrouche, M. Rokbi, et Z. Kouadri, «Étude de l’effet du traitement alcalin des fibres végétales sur le comportement mécanique du composite Polyester insaturée-Fibre Alfa», 2013. |
[33] | Ruijun Gu et B. V. Kokta, «Maximization of the Mechanical Properties of Birch-Polypropylene Composites with Additives by Statistical Experimental Design», J. Thermoplast. Compos. Mater., vol. 23, n° 2, p. 239‑263, mars 2010, doi: 10.1177/0892705708103402. |
[34] | H. Ku, H. Wang, N. Pattarachaiyakoop, et M. Trada, «A review on the tensile properties of natural fiber reinforced polymer composites», Compos. Part B Eng., vol. 42, n° 4, p. 856‑873, juin 2011, doi: 10.1016/j.compositesb.2011.01.010. |
[35] | K. E. Borchani, «Développement d’un composite à base d’un polymère biodégradable et de fibres extraites de la plante d’Alfa», Université de Sfax, 2016. Consulté le: 16 août 2024. [En ligne]. Disponible sur: https://theses.hal.science/tel-01808976/file/These-ELFEHRI-Karama-FINALE.pdf |
[36] | M. A. Sawpan, K. L. Pickering, et A. Fernyhough, «Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites», Compos. Part Appl. Sci. Manuf., vol. 42, no 3, p. 310-319, mars 2011, doi: 10.1016/j.compositesa.2010.12.004. |
[37] | M. Rokbi et H. Osmani, «L’effet des traitements de surface des fibres sur les propriétés mécaniques de composites Polyester-fibres Alfa», présenté à 20ème Congrès Français de Mécanique, Besançon, 2011, p. 7. Consulté le: 16 août 2024. [En ligne]. Disponible sur: https://hal.science/hal-03422584/document. |
[38] | P. Nguyen Tri, A. Guinault, et C. Sollogoub, «Élaboration et propriétés des composites polypropylène recyclé/fibres de bambou», Matér. Tech., vol. 100, no 5, p. 413‑423, 2012, doi: 10.1051/mattech/2011139. |
[39] | B. Bax et J. Müssig, «Impact and tensile properties of PLA/Cordenka and PLA/flax composites», Compos. Sci. Technol., vol. 68, n° 7‑8, p. 1601-1607, juin 2008, doi: 10.1016/j.compscitech.2008.01.004. |
[40] | M. F. Rabah, U. Mouloud, et M. Tizi-Ouzou, «ELABORATION ET CARACTERISATION D’UN COMPOSITE BIODEGRADABLE A MATRICE POLYMERE ET RENFORT NATUREL», UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU, UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU. [En ligne]. Disponible sur: https://dspace.ummto.dz/server/api/core/bitstream. |
[41] | A. Koffi, D. Koffi, et L. Toubal, «Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites», Polym. Test., vol. 93, p. 106956, 2021, doi: https://doi.org/10.1016/j.polymertesting.2020.106956. |
[42] | M. Morreale, R. Scaffaro, A. Maio, et F. P. La Mantia, «Effect of adding wood flour to the physical properties of a biodegradable polymer», Compos. Part Appl. Sci. Manuf., vol. 39, n° 3, p. 503-513, mars 2008, doi: 10.1016/j.compositesa.2007.12.002. |
[43] | A. Roy, S. Chakraborty, S. P. Kundu, R. K. Basak, S. Basu Majumder, et B. Adhikari, «Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model», Bioresour. Technol., vol. 107, p. 222‑228, mars 2012, doi: 10.1016/j.biortech.2011.11.073. |